Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Is 4 the Optimal Number of Clusters? | Spectral Clustering
Cluster Analysis in Python

Scorri per mostrare il menu

book
Is 4 the Optimal Number of Clusters?

The last chart (displayed below) left the question about an optimal number of clusters unanswered. Seems like 4 is the 'local maximum', but the value 5 is not significantly lower than 4. We need to consider both cases.

Let's watch the scatter plot of average January vs July temperatures in the case of 4 clusters.

123456789101112131415161718
# Import the libraries import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.cluster import SpectralClustering # Read the data data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/138ab9ad-aa37-4310-873f-0f62abafb038/Cities+weather.csv', index_col = 0) # Create the model model = SpectralClustering(n_clusters = 4, affinity = 'nearest_neighbors') # Fit the data and predict the labels data['prediction'] = model.fit_predict(data.iloc[:,2:14]) # Visualize the results sns.scatterplot(x = 'Jan', y = 'Jul', hue = 'prediction', data = data) plt.show()
copy

The clustering seems logical, it splits the cities into different disjoint groups. But what if we build the same chart but for 5 clusters? That will be your task!

Compito

Swipe to start coding

Table
  1. Import SpectralClustering function from sklearn.cluster.
  2. Create a SpectralClustering model with 5 clusters using the 'nearest_neighbors' affinity.
  3. Fit the 3-14 columns of data to the model and predict the labels. Save the result within the 'prediction' column of data.
  4. Build the seaborn scatter plot with average January (column 'Jan') vs July (column 'Jul') temperatures for each cluster (column 'prediction').

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 4. Capitolo 5
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?

Chieda ad AI

expand
ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

book
Is 4 the Optimal Number of Clusters?

The last chart (displayed below) left the question about an optimal number of clusters unanswered. Seems like 4 is the 'local maximum', but the value 5 is not significantly lower than 4. We need to consider both cases.

Let's watch the scatter plot of average January vs July temperatures in the case of 4 clusters.

123456789101112131415161718
# Import the libraries import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.cluster import SpectralClustering # Read the data data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/138ab9ad-aa37-4310-873f-0f62abafb038/Cities+weather.csv', index_col = 0) # Create the model model = SpectralClustering(n_clusters = 4, affinity = 'nearest_neighbors') # Fit the data and predict the labels data['prediction'] = model.fit_predict(data.iloc[:,2:14]) # Visualize the results sns.scatterplot(x = 'Jan', y = 'Jul', hue = 'prediction', data = data) plt.show()
copy

The clustering seems logical, it splits the cities into different disjoint groups. But what if we build the same chart but for 5 clusters? That will be your task!

Compito

Swipe to start coding

Table
  1. Import SpectralClustering function from sklearn.cluster.
  2. Create a SpectralClustering model with 5 clusters using the 'nearest_neighbors' affinity.
  3. Fit the 3-14 columns of data to the model and predict the labels. Save the result within the 'prediction' column of data.
  4. Build the seaborn scatter plot with average January (column 'Jan') vs July (column 'Jul') temperatures for each cluster (column 'prediction').

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 4. Capitolo 5
Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?
some-alt