Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Mean Yearly Temperatures Across Clusters | K-Medoids Algorithm
Cluster Analysis in Python

bookMean Yearly Temperatures Across Clusters

The last chart we got was even harder to interpret than two chapters ago. But if we are talking about 'peeks', the number 4 best fits it.

Let's compare the yearly average temperatures across 4 predicted clusters.

Compito

Swipe to start coding

Calculate the yearly average temperatures across each cluster. The structure of data is shown below. Table

Follow the next steps:

  1. Create a KMedoids model with 4 clusters named model.
  2. Fit the 3-15 (these are positions, not indices) columns of data to model.
  3. Add the 'prediction' column to data with predicted by model labels.
  4. Group the data DataFrame by the prediction column, then apply the .mean() function twice: the first call will calculate the monthly means, the second one (with axis = 1) will calculate the yearly averages.

Soluzione

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 5
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

Suggested prompts:

Riassuma questo capitolo

Explain code

Explain why doesn't solve task

close

Awesome!

Completion rate improved to 3.57

bookMean Yearly Temperatures Across Clusters

Scorri per mostrare il menu

The last chart we got was even harder to interpret than two chapters ago. But if we are talking about 'peeks', the number 4 best fits it.

Let's compare the yearly average temperatures across 4 predicted clusters.

Compito

Swipe to start coding

Calculate the yearly average temperatures across each cluster. The structure of data is shown below. Table

Follow the next steps:

  1. Create a KMedoids model with 4 clusters named model.
  2. Fit the 3-15 (these are positions, not indices) columns of data to model.
  3. Add the 'prediction' column to data with predicted by model labels.
  4. Group the data DataFrame by the prediction column, then apply the .mean() function twice: the first call will calculate the monthly means, the second one (with axis = 1) will calculate the yearly averages.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

close

Awesome!

Completion rate improved to 3.57
Sezione 2. Capitolo 5
single

single

some-alt