Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: Slicing and Search Drills | Strings
Data Types in Python

bookChallenge: Slicing and Search Drills

Compito

Swipe to start coding

Fill in the expressions to compute each result using only the taught tools (string methods, slicing, in/find/count, and f-strings).

Compute:

  1. name_clean: trim leading/trailing spaces from full_name.
  2. has_quick: True if "quick" appears anywhere in sentence (case-insensitive).
  3. inside_parens: the substring inside the first pair of parentheses in sentence.
  4. o_count: how many times the letter 'o' appears in sentence (case-insensitive).
  5. id_prefix, id_number, id_suffix: from id_code = "USR-00042-xy" extract "USR", "00042", and "xy" via slicing.
  6. domain: from email, after trimming and lowercasing, take everything after @.
  7. report: build "{name_clean} | {domain} | {id_number} | {o_count}" using an f-string and the provided SEP.

Soluzione

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 3. Capitolo 6
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

Suggested prompts:

Can you explain this in simpler terms?

What are the next steps I should take?

Can you give me an example?

close

Awesome!

Completion rate improved to 5

bookChallenge: Slicing and Search Drills

Scorri per mostrare il menu

Compito

Swipe to start coding

Fill in the expressions to compute each result using only the taught tools (string methods, slicing, in/find/count, and f-strings).

Compute:

  1. name_clean: trim leading/trailing spaces from full_name.
  2. has_quick: True if "quick" appears anywhere in sentence (case-insensitive).
  3. inside_parens: the substring inside the first pair of parentheses in sentence.
  4. o_count: how many times the letter 'o' appears in sentence (case-insensitive).
  5. id_prefix, id_number, id_suffix: from id_code = "USR-00042-xy" extract "USR", "00042", and "xy" via slicing.
  6. domain: from email, after trimming and lowercasing, take everything after @.
  7. report: build "{name_clean} | {domain} | {id_number} | {o_count}" using an f-string and the provided SEP.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

close

Awesome!

Completion rate improved to 5
Sezione 3. Capitolo 6
single

single

some-alt