Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Noise Reduction and Smoothing | Image Processing with OpenCV
Computer Vision Course Outline
course content

Contenu du cours

Computer Vision Course Outline

Computer Vision Course Outline

1. Introduction to Computer Vision
2. Image Processing with OpenCV
3. Convolutional Neural Networks
4. Object Detection
5. Advanced Topics Overview

book
Noise Reduction and Smoothing

Noise in images appears as unwanted graininess or distortion, often caused by low lighting, compression artifacts, or sensor limitations. Smoothing techniques help reduce noise while preserving important image details.

Gaussian Blurring (Smoothing Noise)

The Gaussian filter applies a weighted average to surrounding pixels, giving a natural-looking blur.

Median Blurring (Salt-and-Pepper Noise Removal)

The median filter replaces each pixel with the median value of its neighbors. This is effective for removing salt-and-pepper noise (random white and black pixels).

Tâche

Swipe to start coding

Apply two types of blur on the noisy image of a puppy: noisy puppy It is to see how the effect differs.

  • Kernel size for Gaussian Blur must be 15x15;
  • Kernel size for Median Blur must be 5.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 4
toggle bottom row

book
Noise Reduction and Smoothing

Noise in images appears as unwanted graininess or distortion, often caused by low lighting, compression artifacts, or sensor limitations. Smoothing techniques help reduce noise while preserving important image details.

Gaussian Blurring (Smoothing Noise)

The Gaussian filter applies a weighted average to surrounding pixels, giving a natural-looking blur.

Median Blurring (Salt-and-Pepper Noise Removal)

The median filter replaces each pixel with the median value of its neighbors. This is effective for removing salt-and-pepper noise (random white and black pixels).

Tâche

Swipe to start coding

Apply two types of blur on the noisy image of a puppy: noisy puppy It is to see how the effect differs.

  • Kernel size for Gaussian Blur must be 15x15;
  • Kernel size for Median Blur must be 5.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 4
Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Nous sommes désolés de vous informer que quelque chose s'est mal passé. Qu'est-il arrivé ?
some-alt