Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Challenge: Fit a Spring's Oscillation Data | Data Analysis and Visualization in Physics
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Physics Students

bookChallenge: Fit a Spring's Oscillation Data

In this challenge, you will work with displacement versus time data collected from a spring-mass system in oscillation. Your goal is to fit a sinusoidal model to the data, visualize both the raw measurements and the fitted curve, and analyze the quality of your fit by examining the residuals. This exercise will help you develop practical skills in model fitting and validation, which are essential for analyzing real experimental data in physics.

Tâche

Swipe to start coding

Write a Python function to analyze spring-mass oscillation data by fitting a sinusoidal model and visualizing the results. This task will help you develop practical skills in model fitting and validation, which are essential for analyzing real experimental data in physics.

  • Write a function that takes two arrays as input: one for time data and one for measured displacement data from a spring-mass oscillation experiment.
  • Fit the displacement versus time data to the sinusoidal model defined as A * sin(omega * t + phi) + C, where:
    • A is the amplitude;
    • omega is the angular frequency;
    • phi is the phase offset;
    • C is the vertical offset.
  • Use the scipy.optimize.curve_fit function to fit the model to the data.
  • Use the following initial parameter guesses for curve fitting:
    • Amplitude (A): half the range of the displacement data;
    • Angular frequency (omega): 2.0;
    • Phase offset (phi): 0;
    • Vertical offset (C): mean of the displacement data.
  • Plot both the original measured data (as points) and the fitted curve (as a line) on the same graph using matplotlib.pyplot.
  • Compute the residuals as the difference between the measured displacement values and the fitted values at each time point.
  • Plot the residuals as a function of time on a separate graph.
  • Return the fitted parameters and the residuals from your function.
  • Ensure your code is clear and well-structured, and that your plots include appropriate labels and titles.

Solution

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 5
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

Suggested prompts:

What kind of data format should I use for the displacement versus time measurements?

Can you guide me through the steps to fit a sinusoidal model to the data?

How do I analyze and interpret the residuals after fitting the model?

close

bookChallenge: Fit a Spring's Oscillation Data

Glissez pour afficher le menu

In this challenge, you will work with displacement versus time data collected from a spring-mass system in oscillation. Your goal is to fit a sinusoidal model to the data, visualize both the raw measurements and the fitted curve, and analyze the quality of your fit by examining the residuals. This exercise will help you develop practical skills in model fitting and validation, which are essential for analyzing real experimental data in physics.

Tâche

Swipe to start coding

Write a Python function to analyze spring-mass oscillation data by fitting a sinusoidal model and visualizing the results. This task will help you develop practical skills in model fitting and validation, which are essential for analyzing real experimental data in physics.

  • Write a function that takes two arrays as input: one for time data and one for measured displacement data from a spring-mass oscillation experiment.
  • Fit the displacement versus time data to the sinusoidal model defined as A * sin(omega * t + phi) + C, where:
    • A is the amplitude;
    • omega is the angular frequency;
    • phi is the phase offset;
    • C is the vertical offset.
  • Use the scipy.optimize.curve_fit function to fit the model to the data.
  • Use the following initial parameter guesses for curve fitting:
    • Amplitude (A): half the range of the displacement data;
    • Angular frequency (omega): 2.0;
    • Phase offset (phi): 0;
    • Vertical offset (C): mean of the displacement data.
  • Plot both the original measured data (as points) and the fitted curve (as a line) on the same graph using matplotlib.pyplot.
  • Compute the residuals as the difference between the measured displacement values and the fitted values at each time point.
  • Plot the residuals as a function of time on a separate graph.
  • Return the fitted parameters and the residuals from your function.
  • Ensure your code is clear and well-structured, and that your plots include appropriate labels and titles.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 5
single

single

some-alt