Challenge
For this challenge, the same housing dataset will be used.
However, now it has two features: age and area of the house (columns age
and square_feet
).
1234import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houseprices.csv') print(df.head())
Your task is to build a Multiple Linear Regression model using the OLS
class. Also, you will print the summary table to look at the p-values of each feature.
Swipe to start coding
- Assign the
'age'
and'square_feet'
columns ofdf
toX
. - Build and train the model using the
LinearRegression
class. - Predict the target for
X_new
.
Solution
Merci pour vos commentaires !
single
Demandez à l'IA
Demandez à l'IA
Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion
Résumer ce chapitre
Expliquer le code dans file
Expliquer pourquoi file ne résout pas la tâche
Awesome!
Completion rate improved to 5.56
Challenge
Glissez pour afficher le menu
For this challenge, the same housing dataset will be used.
However, now it has two features: age and area of the house (columns age
and square_feet
).
1234import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houseprices.csv') print(df.head())
Your task is to build a Multiple Linear Regression model using the OLS
class. Also, you will print the summary table to look at the p-values of each feature.
Swipe to start coding
- Assign the
'age'
and'square_feet'
columns ofdf
toX
. - Build and train the model using the
LinearRegression
class. - Predict the target for
X_new
.
Solution
Merci pour vos commentaires !
Awesome!
Completion rate improved to 5.56single