Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Challenge: TF-IDF | Modèles de Texte de Base
Introduction au NLP

Glissez pour afficher le menu

book
Challenge: TF-IDF

Tâche

Swipe to start coding

You have a text corpus stored in corpus variable. Your task is to display the vector for the 'medical' unigram in a TF-IDF model with unigrams, bigrams, and trigrams. To do this:

  1. Import the TfidfVectorizer class to create a TF-IDF model.
  2. Instantiate the TfidfVectorizer class as tfidf_vectorizer and configure it to include unigrams, bigrams, and trigrams.
  3. Use the appropriate method of tfidf_vectorizer to generate a TF-IDF matrix from the 'Document' column in the corpus and store the result in tfidf_matrix.
  4. Convert tfidf_matrix to a dense array and create a DataFrame from it, setting the unique features (terms) as its columns. Store the result in the tfidf_matrix_df variable.
  5. Display the vector for 'medical' as an array.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 8
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

close

Awesome!

Completion rate improved to 3.45

book
Challenge: TF-IDF

Tâche

Swipe to start coding

You have a text corpus stored in corpus variable. Your task is to display the vector for the 'medical' unigram in a TF-IDF model with unigrams, bigrams, and trigrams. To do this:

  1. Import the TfidfVectorizer class to create a TF-IDF model.
  2. Instantiate the TfidfVectorizer class as tfidf_vectorizer and configure it to include unigrams, bigrams, and trigrams.
  3. Use the appropriate method of tfidf_vectorizer to generate a TF-IDF matrix from the 'Document' column in the corpus and store the result in tfidf_matrix.
  4. Convert tfidf_matrix to a dense array and create a DataFrame from it, setting the unique features (terms) as its columns. Store the result in the tfidf_matrix_df variable.
  5. Display the vector for 'medical' as an array.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

close

Awesome!

Completion rate improved to 3.45

Glissez pour afficher le menu

some-alt