Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Challenge: Lemmatization with POS Tagging | Racine et Lemmatisation
Introduction au NLP

Glissez pour afficher le menu

book
Challenge: Lemmatization with POS Tagging

Tâche

Swipe to start coding

Your are given some text in text variable. Your task is to perform a lemmatization with pos tags on this text. To do this:

  1. Convert text to lowercase and save in text_lower.
  2. Tokenize the text_lower string and save the result in tokens.
  3. Load English stop words, convert them to set, and save in stop_words.
  4. Filter out the stop words using list comprehension and save the result in filtered_tokens.
  5. Perform POS tagging using the respective function and save the result in tagged_tokens.
  6. Create a WordNet Lemmatizer and save it in lemmatizer.
  7. Lemmatize the tokens taking their POS tags into account using list comprehension and save the result in lemmatized_tokens.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 8
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

close

Awesome!

Completion rate improved to 3.45

book
Challenge: Lemmatization with POS Tagging

Tâche

Swipe to start coding

Your are given some text in text variable. Your task is to perform a lemmatization with pos tags on this text. To do this:

  1. Convert text to lowercase and save in text_lower.
  2. Tokenize the text_lower string and save the result in tokens.
  3. Load English stop words, convert them to set, and save in stop_words.
  4. Filter out the stop words using list comprehension and save the result in filtered_tokens.
  5. Perform POS tagging using the respective function and save the result in tagged_tokens.
  6. Create a WordNet Lemmatizer and save it in lemmatizer.
  7. Lemmatize the tokens taking their POS tags into account using list comprehension and save the result in lemmatized_tokens.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

close

Awesome!

Completion rate improved to 3.45

Glissez pour afficher le menu

some-alt