Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Challenge: Clean Messy Reviews | Advanced Text Cleaning
Quizzes & Challenges
Quizzes
Challenges
/
Data Cleaning Techniques in Python

bookChallenge: Clean Messy Reviews

Tâche

Swipe to start coding

You are given a list of customer review texts in the variable reviews. The reviews may contain emojis, hashtags, repeated characters, noise words, punctuation, and informal expressions.

Your goal is to create a normalized version of each review using several NLP cleaning steps.

Follow these steps:

  1. Convert each review to lowercase.
  2. Remove emojis, hashtags, and mentions using a regular expression.
  3. Normalize repeated characters: any character repeated 3 or more times should be reduced to a single instance (cooooolcool).
  4. Tokenize each review using nltk.word_tokenize().
  5. Remove stopwords using the provided stopwords list.
  6. Apply stemming to the remaining tokens using PorterStemmer.
  7. Store each cleaned review (joined back with spaces) in a list named cleaned_reviews.

Make sure the variable cleaned_reviews is declared and contains all normalized reviews in the correct order.

Solution

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 4. Chapitre 3
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

close

bookChallenge: Clean Messy Reviews

Glissez pour afficher le menu

Tâche

Swipe to start coding

You are given a list of customer review texts in the variable reviews. The reviews may contain emojis, hashtags, repeated characters, noise words, punctuation, and informal expressions.

Your goal is to create a normalized version of each review using several NLP cleaning steps.

Follow these steps:

  1. Convert each review to lowercase.
  2. Remove emojis, hashtags, and mentions using a regular expression.
  3. Normalize repeated characters: any character repeated 3 or more times should be reduced to a single instance (cooooolcool).
  4. Tokenize each review using nltk.word_tokenize().
  5. Remove stopwords using the provided stopwords list.
  6. Apply stemming to the remaining tokens using PorterStemmer.
  7. Store each cleaned review (joined back with spaces) in a list named cleaned_reviews.

Make sure the variable cleaned_reviews is declared and contains all normalized reviews in the correct order.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 4. Chapitre 3
single

single

some-alt