Résumé
Les principaux sujets abordés dans ce cours sont résumés ci-dessous. Le matériel de synthèse est disponible en téléchargement à la fin de cette page.
Configuration de TensorFlow
Installation
pip install tensorflow
Importation
# Import the TensorFlow library with the alias tf
import tensorflow as tf
Types de tenseurs
Création simple de tenseurs
# Create a 1D tensor
tensor_1D = tf.constant([1, 2, 3])
# Create a 2D tensor
tensor_2D = tf.constant([[1, 2, 3], [4, 5, 6]])
# Create a 3D tensor
tensor_3D = tf.constant([[[1, 2], [3, 4]], [[5, 6],[7, 8]]])
Propriétés des tenseurs
- Rang : indique le nombre de dimensions présentes dans le tenseur. Par exemple, une matrice a un rang de 2. Le rang d’un tenseur peut être obtenu avec l’attribut
.ndim:
print(f'Rank of a tensor: {tensor.ndim}')
- Shape : décrit combien de valeurs existent dans chaque dimension. Une matrice 2x3 a une forme
(2, 3). La longueur du paramètre shape correspond au rang du tenseur (son nombre de dimensions). La forme d’un tenseur peut être obtenue avec l’attribut.shape:
print(f'Shape of a tensor: {tensor.shape}')
- Types : Les tenseurs existent sous différents types de données. Parmi les plus courants :
float32,int32etstring. Le type de données d’un tenseur peut être obtenu avec l’attribut.dtype:
print(f'Data type of a tensor: {tensor.dtype}')
Axes des tenseurs
Applications des tenseurs
- Table Data
- Séquences de texte
- Suites numériques
- Traitement d'images
- Traitement vidéo
Lots
Méthodes de création de tenseurs
# Create a 2x2 constant tensor
tensor_const = tf.constant([[1, 2], [3, 4]])
# Create a variable tensor
tensor_var = tf.Variable([[1, 2], [3, 4]])
# Zero tensor of shape (3, 3)
tensor_zeros = tf.zeros((3, 3))
# Ones tensor of shape (2, 2)
tensor_ones = tf.ones((2, 2))
# Tensor of shape (2, 2) filled with 6
tensor_fill = tf.fill((2, 2), 6)
# Generate a sequence of numbers starting from 0, ending at 9
tensor_range = tf.range(10)
# Create 5 equally spaced values between 0 and 10
tensor_linspace = tf.linspace(0, 10, 5)
# Tensor of shape (2, 2) with random values normally distributed
tensor_random = tf.random.normal((2, 2), mean=4, stddev=0.5)
# Tensor of shape (2, 2) with random values uniformly distributed
tensor_random = tf.random.uniform((2, 2), minval=-2, maxval=2)
Conversions
- NumPy vers Tenseur
# Create a NumPy array based on a Python list
numpy_array = np.array([[1, 2], [3, 4]])
# Convert a NumPy array to a tensor
tensor_from_np = tf.convert_to_tensor(numpy_array)
- Pandas vers Tenseur
# Create a DataFrame based on dictionary
df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
# Convert a DataFrame to a tensor
tensor_from_df = tf.convert_to_tensor(df.values)
- Tenseur constant vers tenseur variable
# Create a variable from a tensor
tensor = tf.random.normal((2, 3))
variable_1 = tf.Variable(tensor)
# Create a variable based on other generator
variable_2 = tf.Variable(tf.zeros((2, 2)))
Types de données
# Creating a tensor of type float16
tensor_float = tf.constant([1.2, 2.3, 3.4], dtype=tf.float16)
# Convert tensor_float from float32 to int32
tensor_int = tf.cast(tensor_float, dtype=tf.int32)
Arithmétique
- Addition
c1 = tf.add(a, b)
c2 = a + b
# Changes the object inplace without creating a new one
a.assign_add(b)
- Soustraction
c1 = tf.subtract(a, b)
c2 = a - b
# Inplace substraction
a.assign_sub(b)
- Multiplication élément par élément
c1 = tf.multiply(a, b)
c2 = a * b
- Division
c1 = tf.divide(a, b)
c2 = a / b
Diffusion automatique
Algèbre linéaire
- Multiplication de matrices
product1 = tf.matmul(matrix1, matrix2)
product2 = matrix1 @ matrix2
- Inversion de matrice
inverse_mat = tf.linalg.inv(matrix)
- Transposition
transposed = tf.transpose(matrix)
- Produit scalaire
# Dot product along axes
dot_product_axes1 = tf.tensordot(matrix1, matrix2, axes=1)
dot_product_axes0 = tf.tensordot(matrix1, matrix2, axes=0)
Remodelage
# Create a tensor with shape (3, 2)
tensor = tf.constant([[1, 2], [3, 4], [5, 6]])
# Reshape the tensor to shape (2, 3)
reshaped_tensor = tf.reshape(tensor, (2, 3))
Découpage
# Create a tensor
tensor = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# Slice tensor to extract sub-tensor from index (0, 1) of size (1, 2)
sliced_tensor = tf.slice(tensor, begin=(0, 1), size=(1, 2))
# Slice tensor to extract sub-tensor from index (1, 0) of size (2, 2)
sliced_tensor = tf.slice(tensor, (1, 0), (2, 2))
Modification par découpage
# Create a tensor
tensor = tf.Variable([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# Change the entire first row
tensor[0, :].assign([0, 0, 0])
# Modify the second and the third columns
tensor[:, 1:3].assign(tf.fill((3,2), 1))
Concaténation
# Create two tensors
tensor1 = tf.constant([[1, 2, 3], [4, 5, 6]])
tensor2 = tf.constant([[7, 8, 9]])
# Concatenate tensors vertically (along rows)
concatenated_tensor = tf.concat([tensor1, tensor2], axis=0)
# Concatenate tensors horizontally (along columns)
concatenated_tensor = tf.concat([tensor3, tensor4], axis=1)
Opérations de réduction
# Calculate sum of all elements
total_sum = tf.reduce_sum(tensor)
# Calculate mean of all elements
mean_val = tf.reduce_mean(tensor)
# Determine the maximum value
max_val = tf.reduce_max(tensor)
# Find the minimum value
min_val = tf.reduce_min(tensor)
Bande de gradient
# Define input variables
x = tf.Variable(tf.fill((2, 3), 3.0))
z = tf.Variable(5.0)
# Start recording the operations
with tf.GradientTape() as tape:
# Define the calculations
y = tf.reduce_sum(x * x + 2 * z)
# Extract the gradient for the specific inputs (x and z)
grad = tape.gradient(y, [x, z])
print(f"The gradient of y with respect to x is:\n{grad[0].numpy()}")
print(f"The gradient of y with respect to z is: {grad[1].numpy()}")
@tf.function
@tf.function
def compute_gradient_conditional(x):
with tf.GradientTape() as tape:
if tf.reduce_sum(x) > 0:
y = x * x
else:
y = x * x * x
return tape.gradient(y, x)
x = tf.constant([-2.0, 2.0])
grad = compute_gradient_conditional(x)
print(f"The gradient at x = {x.numpy()} is {grad.numpy()}")
Tout était clair ?
Merci pour vos commentaires !
Section 3. Chapitre 5
Demandez à l'IA
Demandez à l'IA
Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion
Génial!
Completion taux amélioré à 6.25
Résumé
Glissez pour afficher le menu
Les principaux sujets abordés dans ce cours sont résumés ci-dessous. Le matériel de synthèse est disponible en téléchargement à la fin de cette page.
Configuration de TensorFlow
Installation
pip install tensorflow
Importation
# Import the TensorFlow library with the alias tf
import tensorflow as tf
Types de tenseurs
Création simple de tenseurs
# Create a 1D tensor
tensor_1D = tf.constant([1, 2, 3])
# Create a 2D tensor
tensor_2D = tf.constant([[1, 2, 3], [4, 5, 6]])
# Create a 3D tensor
tensor_3D = tf.constant([[[1, 2], [3, 4]], [[5, 6],[7, 8]]])
Propriétés des tenseurs
- Rang : indique le nombre de dimensions présentes dans le tenseur. Par exemple, une matrice a un rang de 2. Le rang d’un tenseur peut être obtenu avec l’attribut
.ndim:
print(f'Rank of a tensor: {tensor.ndim}')
- Shape : décrit combien de valeurs existent dans chaque dimension. Une matrice 2x3 a une forme
(2, 3). La longueur du paramètre shape correspond au rang du tenseur (son nombre de dimensions). La forme d’un tenseur peut être obtenue avec l’attribut.shape:
print(f'Shape of a tensor: {tensor.shape}')
- Types : Les tenseurs existent sous différents types de données. Parmi les plus courants :
float32,int32etstring. Le type de données d’un tenseur peut être obtenu avec l’attribut.dtype:
print(f'Data type of a tensor: {tensor.dtype}')
Axes des tenseurs
Applications des tenseurs
- Table Data
- Séquences de texte
- Suites numériques
- Traitement d'images
- Traitement vidéo
Lots
Méthodes de création de tenseurs
# Create a 2x2 constant tensor
tensor_const = tf.constant([[1, 2], [3, 4]])
# Create a variable tensor
tensor_var = tf.Variable([[1, 2], [3, 4]])
# Zero tensor of shape (3, 3)
tensor_zeros = tf.zeros((3, 3))
# Ones tensor of shape (2, 2)
tensor_ones = tf.ones((2, 2))
# Tensor of shape (2, 2) filled with 6
tensor_fill = tf.fill((2, 2), 6)
# Generate a sequence of numbers starting from 0, ending at 9
tensor_range = tf.range(10)
# Create 5 equally spaced values between 0 and 10
tensor_linspace = tf.linspace(0, 10, 5)
# Tensor of shape (2, 2) with random values normally distributed
tensor_random = tf.random.normal((2, 2), mean=4, stddev=0.5)
# Tensor of shape (2, 2) with random values uniformly distributed
tensor_random = tf.random.uniform((2, 2), minval=-2, maxval=2)
Conversions
- NumPy vers Tenseur
# Create a NumPy array based on a Python list
numpy_array = np.array([[1, 2], [3, 4]])
# Convert a NumPy array to a tensor
tensor_from_np = tf.convert_to_tensor(numpy_array)
- Pandas vers Tenseur
# Create a DataFrame based on dictionary
df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
# Convert a DataFrame to a tensor
tensor_from_df = tf.convert_to_tensor(df.values)
- Tenseur constant vers tenseur variable
# Create a variable from a tensor
tensor = tf.random.normal((2, 3))
variable_1 = tf.Variable(tensor)
# Create a variable based on other generator
variable_2 = tf.Variable(tf.zeros((2, 2)))
Types de données
# Creating a tensor of type float16
tensor_float = tf.constant([1.2, 2.3, 3.4], dtype=tf.float16)
# Convert tensor_float from float32 to int32
tensor_int = tf.cast(tensor_float, dtype=tf.int32)
Arithmétique
- Addition
c1 = tf.add(a, b)
c2 = a + b
# Changes the object inplace without creating a new one
a.assign_add(b)
- Soustraction
c1 = tf.subtract(a, b)
c2 = a - b
# Inplace substraction
a.assign_sub(b)
- Multiplication élément par élément
c1 = tf.multiply(a, b)
c2 = a * b
- Division
c1 = tf.divide(a, b)
c2 = a / b
Diffusion automatique
Algèbre linéaire
- Multiplication de matrices
product1 = tf.matmul(matrix1, matrix2)
product2 = matrix1 @ matrix2
- Inversion de matrice
inverse_mat = tf.linalg.inv(matrix)
- Transposition
transposed = tf.transpose(matrix)
- Produit scalaire
# Dot product along axes
dot_product_axes1 = tf.tensordot(matrix1, matrix2, axes=1)
dot_product_axes0 = tf.tensordot(matrix1, matrix2, axes=0)
Remodelage
# Create a tensor with shape (3, 2)
tensor = tf.constant([[1, 2], [3, 4], [5, 6]])
# Reshape the tensor to shape (2, 3)
reshaped_tensor = tf.reshape(tensor, (2, 3))
Découpage
# Create a tensor
tensor = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# Slice tensor to extract sub-tensor from index (0, 1) of size (1, 2)
sliced_tensor = tf.slice(tensor, begin=(0, 1), size=(1, 2))
# Slice tensor to extract sub-tensor from index (1, 0) of size (2, 2)
sliced_tensor = tf.slice(tensor, (1, 0), (2, 2))
Modification par découpage
# Create a tensor
tensor = tf.Variable([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# Change the entire first row
tensor[0, :].assign([0, 0, 0])
# Modify the second and the third columns
tensor[:, 1:3].assign(tf.fill((3,2), 1))
Concaténation
# Create two tensors
tensor1 = tf.constant([[1, 2, 3], [4, 5, 6]])
tensor2 = tf.constant([[7, 8, 9]])
# Concatenate tensors vertically (along rows)
concatenated_tensor = tf.concat([tensor1, tensor2], axis=0)
# Concatenate tensors horizontally (along columns)
concatenated_tensor = tf.concat([tensor3, tensor4], axis=1)
Opérations de réduction
# Calculate sum of all elements
total_sum = tf.reduce_sum(tensor)
# Calculate mean of all elements
mean_val = tf.reduce_mean(tensor)
# Determine the maximum value
max_val = tf.reduce_max(tensor)
# Find the minimum value
min_val = tf.reduce_min(tensor)
Bande de gradient
# Define input variables
x = tf.Variable(tf.fill((2, 3), 3.0))
z = tf.Variable(5.0)
# Start recording the operations
with tf.GradientTape() as tape:
# Define the calculations
y = tf.reduce_sum(x * x + 2 * z)
# Extract the gradient for the specific inputs (x and z)
grad = tape.gradient(y, [x, z])
print(f"The gradient of y with respect to x is:\n{grad[0].numpy()}")
print(f"The gradient of y with respect to z is: {grad[1].numpy()}")
@tf.function
@tf.function
def compute_gradient_conditional(x):
with tf.GradientTape() as tape:
if tf.reduce_sum(x) > 0:
y = x * x
else:
y = x * x * x
return tape.gradient(y, x)
x = tf.constant([-2.0, 2.0])
grad = compute_gradient_conditional(x)
print(f"The gradient at x = {x.numpy()} is {grad.numpy()}")
Tout était clair ?
Merci pour vos commentaires !
Section 3. Chapitre 5