Challenge: Maximizing Profit Using Quadratic Functions
Tâche
Swipe to start coding
A small business tracks its monthly profit over a 12-month period. You're given the company's profit function:
P(x)=−x2+12x−20- x = Number of units sold;
- P(x) = Profit in $1000 units;
- The negative coefficient of x2 means profit increases to a point, then decreases due to production costs.
- Find the optimal number of units to sell (vertex of the parabola).
- Find the breakeven points where profit is zero (roots of the equation).
Solution
Tout était clair ?
Merci pour vos commentaires !
Section 1. Chapitre 7
single
Demandez à l'IA
Demandez à l'IA
Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion
Suggested prompts:
Can you explain this in simpler terms?
What are the main takeaways from this?
Can you give me an example?
Awesome!
Completion rate improved to 1.89
Challenge: Maximizing Profit Using Quadratic Functions
Glissez pour afficher le menu
Tâche
Swipe to start coding
A small business tracks its monthly profit over a 12-month period. You're given the company's profit function:
P(x)=−x2+12x−20- x = Number of units sold;
- P(x) = Profit in $1000 units;
- The negative coefficient of x2 means profit increases to a point, then decreases due to production costs.
- Find the optimal number of units to sell (vertex of the parabola).
- Find the breakeven points where profit is zero (roots of the equation).
Solution
Tout était clair ?
Merci pour vos commentaires !
Awesome!
Completion rate improved to 1.89Section 1. Chapitre 7
single