Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Evaluation Before and After Calibration | Calibration Methods in Practice
Model Calibration with Python

bookEvaluation Before and After Calibration

Tâche

Swipe to start coding

In this challenge, you will evaluate a classifier before and after probability calibration. You will train a logistic regression classifier on a binary dataset, compute predicted probabilities, and measure:

  • Brier score
  • Expected Calibration Error (ECE)
  • Calibration curve points

You will then apply isotonic regression calibration using CalibratedClassifierCV, recompute the same metrics, and compare the results.

Your goal:

  1. Train a logistic regression classifier on the dataset.

  2. Generate uncalibrated predicted probabilities.

  3. Apply isotonic calibration using CalibratedClassifierCV.

  4. Compute Brier score and a simple ECE metric before and after calibration.

  5. Print the results as two values:

    • brier_before, brier_after
    • ece_before, ece_after

Solution

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 6
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

Suggested prompts:

Can you explain this in simpler terms?

What are the main points I should remember?

Can you give me an example?

close

bookEvaluation Before and After Calibration

Glissez pour afficher le menu

Tâche

Swipe to start coding

In this challenge, you will evaluate a classifier before and after probability calibration. You will train a logistic regression classifier on a binary dataset, compute predicted probabilities, and measure:

  • Brier score
  • Expected Calibration Error (ECE)
  • Calibration curve points

You will then apply isotonic regression calibration using CalibratedClassifierCV, recompute the same metrics, and compare the results.

Your goal:

  1. Train a logistic regression classifier on the dataset.

  2. Generate uncalibrated predicted probabilities.

  3. Apply isotonic calibration using CalibratedClassifierCV.

  4. Compute Brier score and a simple ECE metric before and after calibration.

  5. Print the results as two values:

    • brier_before, brier_after
    • ece_before, ece_after

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 6
single

single

some-alt