Challenge: Grid Search
Tâche
Swipe to start coding
In this challenge, you will apply grid search to automatically find the best hyperparameters for a RandomForestClassifier.
You'll use a noisy two-class dataset generated with make_moons.
Your task is to:
- Define the parameter grid
param_grid:'n_estimators':[50, 100, 200]'max_depth':[3, 5, None]'min_samples_split':[2, 4]
- Create a
GridSearchCVobject using:- The model:
RandomForestClassifier(random_state=42) - The defined grid
param_grid cv=5cross-validation folds'accuracy'as the scoring metric
- The model:
- Fit the search object on the training data and print:
grid_search.best_params_- The test accuracy of the best model.
Solution
Tout était clair ?
Merci pour vos commentaires !
Section 2. Chapitre 4
single
Demandez à l'IA
Demandez à l'IA
Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion
Génial!
Completion taux amélioré à 9.09
Challenge: Grid Search
Glissez pour afficher le menu
Tâche
Swipe to start coding
In this challenge, you will apply grid search to automatically find the best hyperparameters for a RandomForestClassifier.
You'll use a noisy two-class dataset generated with make_moons.
Your task is to:
- Define the parameter grid
param_grid:'n_estimators':[50, 100, 200]'max_depth':[3, 5, None]'min_samples_split':[2, 4]
- Create a
GridSearchCVobject using:- The model:
RandomForestClassifier(random_state=42) - The defined grid
param_grid cv=5cross-validation folds'accuracy'as the scoring metric
- The model:
- Fit the search object on the training data and print:
grid_search.best_params_- The test accuracy of the best model.
Solution
Tout était clair ?
Merci pour vos commentaires !
Section 2. Chapitre 4
single