Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Exploring Data [2/3] | Reading and Exploring Data
Introduction to pandas [track]

bookExploring Data [2/3]

DataFrame size

To get the dimensionality of DataFrame (i.e., number of rows and columns), use the .shape attribute. It will return a tuple (immutable list-like structure) with 2 values: the first one is the number of rows, the second one is the number of columns.

1234567
# Importing library import pandas as pd # Reading csv file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/67798cef-5e7c-4fbc-af7d-ae96b4443c0a/audi.csv') # DataFrame' dimensionality print(df.shape)
copy

Values' types

Before aggregating and visualizing data, you need to understand are these data have appropriate formats. For example, you may face the situation when prices will be represented in text form - this will make impossible to aggregate it. To get the columns values' types, use the .dtypes attribute.

1234567
# Importing library import pandas as pd # Reading csv file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/67798cef-5e7c-4fbc-af7d-ae96b4443c0a/audi.csv') # Columns values' types print(df.dtypes)
copy

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 5

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

Awesome!

Completion rate improved to 3.33

bookExploring Data [2/3]

Glissez pour afficher le menu

DataFrame size

To get the dimensionality of DataFrame (i.e., number of rows and columns), use the .shape attribute. It will return a tuple (immutable list-like structure) with 2 values: the first one is the number of rows, the second one is the number of columns.

1234567
# Importing library import pandas as pd # Reading csv file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/67798cef-5e7c-4fbc-af7d-ae96b4443c0a/audi.csv') # DataFrame' dimensionality print(df.shape)
copy

Values' types

Before aggregating and visualizing data, you need to understand are these data have appropriate formats. For example, you may face the situation when prices will be represented in text form - this will make impossible to aggregate it. To get the columns values' types, use the .dtypes attribute.

1234567
# Importing library import pandas as pd # Reading csv file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/67798cef-5e7c-4fbc-af7d-ae96b4443c0a/audi.csv') # Columns values' types print(df.dtypes)
copy

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 5
some-alt