Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Joining | Important Functions
NumPy in a Nutshell
course content

Contenu du cours

NumPy in a Nutshell

NumPy in a Nutshell

1. Getting Started with NumPy
2. Dimensions in Arrays
3. Indexing and Slicing
4. Important Functions

book
Joining

Another equally important operation in array manipulation is joining arrays. Joining arrays involves combining multiple arrays into a single array that includes all the elements from each of the original arrays.

We perform this concatenation along the specified axes:

  • if axis = 0 (which is the default value), this implies concatenating the arrays by rows;
  • if axis = 1, this means concatenating the arrays by columns.

Join two arrays:

12345678
import numpy as np array_1 = np.array([54, 6, 23, 1, 6]) array_2 = np.array([12, 67, 94, 2, 8 ]) array = np.concatenate((array_1, array_2)) print(array)
copy

Concatenate two 2-D arrays along columns (axis=1):

12345678
import numpy as np array_1 = np.array([[0, 1, 2], [3, 4, 5]]) array_2 = np.array([[6, 7, 8], [9, 10, 11]]) array = np.concatenate((array_1, array_2), axis=1) print(array)
copy

Concatenate two 2-D arrays along rows (default axis=0):

12345678
import numpy as np array_1 = np.array([[0, 1, 2], [3, 4, 5]]) array_2 = np.array([[6, 7, 8], [9, 10, 11]]) array = np.concatenate((array_1, array_2)) print(array)
copy
Tâche

Swipe to start coding

You have two arrays:

  1. [[12, 56, 78], [35, 1, 5]];

  2. [[ 8, 65, 3], [ 1, 2, 3]].

You have to create the following combined array:

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 4. Chapitre 3
toggle bottom row

book
Joining

Another equally important operation in array manipulation is joining arrays. Joining arrays involves combining multiple arrays into a single array that includes all the elements from each of the original arrays.

We perform this concatenation along the specified axes:

  • if axis = 0 (which is the default value), this implies concatenating the arrays by rows;
  • if axis = 1, this means concatenating the arrays by columns.

Join two arrays:

12345678
import numpy as np array_1 = np.array([54, 6, 23, 1, 6]) array_2 = np.array([12, 67, 94, 2, 8 ]) array = np.concatenate((array_1, array_2)) print(array)
copy

Concatenate two 2-D arrays along columns (axis=1):

12345678
import numpy as np array_1 = np.array([[0, 1, 2], [3, 4, 5]]) array_2 = np.array([[6, 7, 8], [9, 10, 11]]) array = np.concatenate((array_1, array_2), axis=1) print(array)
copy

Concatenate two 2-D arrays along rows (default axis=0):

12345678
import numpy as np array_1 = np.array([[0, 1, 2], [3, 4, 5]]) array_2 = np.array([[6, 7, 8], [9, 10, 11]]) array = np.concatenate((array_1, array_2)) print(array)
copy
Tâche

Swipe to start coding

You have two arrays:

  1. [[12, 56, 78], [35, 1, 5]];

  2. [[ 8, 65, 3], [ 1, 2, 3]].

You have to create the following combined array:

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 4. Chapitre 3
Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
We're sorry to hear that something went wrong. What happened?
some-alt