Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Problem B. Minimum path | Solutions
Dynamic Programming
course content

Contenu du cours

Dynamic Programming

Dynamic Programming

1. Intro to Dynamic Programming
2. Problems
3. Solutions

book
Problem B. Minimum path

Let's traverse mat and update values in it: now mat[i][j] contains the path cost to cell [i, j]. How to reach that? You can get to the mat[i][j] from either mat[i-1][j] or mat[i][j-1] cell, that also contain the path cost to themselves. Thus, mat[i][j] can be updated as:

mat[i][j] += min(mat[i-1][j], mat[i][j-1]),

since you choose the minumum cost path between these two.

Note that some cells can be reached only from left or right, for example, mat[0][j] (only from mat[0][j-1]).

So, the goal is to traverse mat and update its values; after that, return path cost at mat[-1][-1].

123456789101112131415161718
def minPath(mat): m, n = len(mat), len(mat[0]) for i in range(1, m): mat[i][0] += mat[i-1][0] for j in range(1, n): mat[0][j] += mat[0][j-1] for i in range(1, m): for j in range(1, n): mat[i][j] += min(mat[i-1][j], mat[i][j-1]) return mat[-1][-1] mat = [[10,1,23,4,5,1], [2,13,20,9,1,5], [14,3,3,6,12,7]] print(minPath(mat))
copy

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 2
toggle bottom row

book
Problem B. Minimum path

Let's traverse mat and update values in it: now mat[i][j] contains the path cost to cell [i, j]. How to reach that? You can get to the mat[i][j] from either mat[i-1][j] or mat[i][j-1] cell, that also contain the path cost to themselves. Thus, mat[i][j] can be updated as:

mat[i][j] += min(mat[i-1][j], mat[i][j-1]),

since you choose the minumum cost path between these two.

Note that some cells can be reached only from left or right, for example, mat[0][j] (only from mat[0][j-1]).

So, the goal is to traverse mat and update its values; after that, return path cost at mat[-1][-1].

123456789101112131415161718
def minPath(mat): m, n = len(mat), len(mat[0]) for i in range(1, m): mat[i][0] += mat[i-1][0] for j in range(1, n): mat[0][j] += mat[0][j-1] for i in range(1, m): for j in range(1, n): mat[i][j] += min(mat[i-1][j], mat[i][j-1]) return mat[-1][-1] mat = [[10,1,23,4,5,1], [2,13,20,9,1,5], [14,3,3,6,12,7]] print(minPath(mat))
copy

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 2
Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Nous sommes désolés de vous informer que quelque chose s'est mal passé. Qu'est-il arrivé ?
some-alt