Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Problem D. Coin Change | Solutions
Dynamic Programming

bookProblem D. Coin Change

Imagine you got N cents as combination of some coins, and the last added coin was C. Then, number of possible combinations dp[N] is equal to dp[N-C]. Consider that you can reach N cents by adding either c[0], c[1], ... ,c[m-1] cents, so number of possible combinations is:

dp[N] = dp[N-c[0]] + dp[N-c[1]] + ... + dp[N-c[m-1]]

Note that value of N-c[i] must be non-negative. Let's use tabulation: for values j from coin up to N: update dp[j] with adding dp[j-coin]; repeat for each coin.

12345678910
def coinChange(n , coins): dp = [0 for _ in range(n+1)] dp[0] = 1 for i in range(len(coins)): for j in range(coins[i], n+1): dp[j] += dp[j-coins[i]] return dp[n] print(coinChange(14, [1,2,3,7])) print(coinChange(100, [2,3,5,7,11]))
copy

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 4
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

Suggested prompts:

Résumer ce chapitre

Expliquer le code dans file

Expliquer pourquoi file ne résout pas la tâche

close

Awesome!

Completion rate improved to 8.33

bookProblem D. Coin Change

Glissez pour afficher le menu

Imagine you got N cents as combination of some coins, and the last added coin was C. Then, number of possible combinations dp[N] is equal to dp[N-C]. Consider that you can reach N cents by adding either c[0], c[1], ... ,c[m-1] cents, so number of possible combinations is:

dp[N] = dp[N-c[0]] + dp[N-c[1]] + ... + dp[N-c[m-1]]

Note that value of N-c[i] must be non-negative. Let's use tabulation: for values j from coin up to N: update dp[j] with adding dp[j-coin]; repeat for each coin.

12345678910
def coinChange(n , coins): dp = [0 for _ in range(n+1)] dp[0] = 1 for i in range(len(coins)): for j in range(coins[i], n+1): dp[j] += dp[j-coins[i]] return dp[n] print(coinChange(14, [1,2,3,7])) print(coinChange(100, [2,3,5,7,11]))
copy

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

close

Awesome!

Completion rate improved to 8.33
Section 3. Chapitre 4
single

single

some-alt