Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Problem D. Coin Change | Solutions
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Dynamic Programming

bookProblem D. Coin Change

Imagine you got N cents as combination of some coins, and the last added coin was C. Then, number of possible combinations dp[N] is equal to dp[N-C]. Consider that you can reach N cents by adding either c[0], c[1], ... ,c[m-1] cents, so number of possible combinations is:

dp[N] = dp[N-c[0]] + dp[N-c[1]] + ... + dp[N-c[m-1]]

Note that value of N-c[i] must be non-negative. Let's use tabulation: for values j from coin up to N: update dp[j] with adding dp[j-coin]; repeat for each coin.

12345678910
def coinChange(n , coins): dp = [0 for _ in range(n+1)] dp[0] = 1 for i in range(len(coins)): for j in range(coins[i], n+1): dp[j] += dp[j-coins[i]] return dp[n] print(coinChange(14, [1,2,3,7])) print(coinChange(100, [2,3,5,7,11]))
copy

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 4
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

Suggested prompts:

Résumer ce chapitre

Expliquer le code dans file

Expliquer pourquoi file ne résout pas la tâche

close

bookProblem D. Coin Change

Glissez pour afficher le menu

Imagine you got N cents as combination of some coins, and the last added coin was C. Then, number of possible combinations dp[N] is equal to dp[N-C]. Consider that you can reach N cents by adding either c[0], c[1], ... ,c[m-1] cents, so number of possible combinations is:

dp[N] = dp[N-c[0]] + dp[N-c[1]] + ... + dp[N-c[m-1]]

Note that value of N-c[i] must be non-negative. Let's use tabulation: for values j from coin up to N: update dp[j] with adding dp[j-coin]; repeat for each coin.

12345678910
def coinChange(n , coins): dp = [0 for _ in range(n+1)] dp[0] = 1 for i in range(len(coins)): for j in range(coins[i], n+1): dp[j] += dp[j-coins[i]] return dp[n] print(coinChange(14, [1,2,3,7])) print(coinChange(100, [2,3,5,7,11]))
copy

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 4
single

single

some-alt