Problem C. Minimum Path in Triangle
The key to the solution is forming all possible minimum-cost paths from top to bottom row. You can not be sure which one will have minimum cost, so let's traverse a triangle
and update values in the cells:
triangle[i][j] += min(triangle[i-1][j-1], triangle[i-1][j]
: thats how you can reach cell
[i, j]` with min costtriangle[i][0] += triangle[i-1][0], triangle[i][i-1] += triangle[i-1][i-1]
: extreme cases (number of columns in each row is equal to number of row).
After updating, choose the minimum path cost, which is in the last row.
1234567891011121314151617181920def minPath(triangle): for i in range(1, len(triangle)): for j in range(i+1): small = 10000000 if j > 0: small = triangle[i-1][j-1] if j < i: small = min(small, triangle[i-1][j]) triangle[i][j] += small return min(triangle[-1]) triangle = [[90], [72, 6], [3, 61, 51], [90, 70, 23, 100], [79, 92, 72, 14, 1], [7, 97, 29, 100, 93, 93], [52, 95, 21, 36, 69, 69, 14], [33, 82, 20, 37, 79, 83, 21, 45]] print(minPath(triangle))
Merci pour vos commentaires !
single
Demandez à l'IA
Demandez à l'IA
Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion
Awesome!
Completion rate improved to 8.33
Problem C. Minimum Path in Triangle
Glissez pour afficher le menu
The key to the solution is forming all possible minimum-cost paths from top to bottom row. You can not be sure which one will have minimum cost, so let's traverse a triangle
and update values in the cells:
triangle[i][j] += min(triangle[i-1][j-1], triangle[i-1][j]
: thats how you can reach cell
[i, j]` with min costtriangle[i][0] += triangle[i-1][0], triangle[i][i-1] += triangle[i-1][i-1]
: extreme cases (number of columns in each row is equal to number of row).
After updating, choose the minimum path cost, which is in the last row.
1234567891011121314151617181920def minPath(triangle): for i in range(1, len(triangle)): for j in range(i+1): small = 10000000 if j > 0: small = triangle[i-1][j-1] if j < i: small = min(small, triangle[i-1][j]) triangle[i][j] += small return min(triangle[-1]) triangle = [[90], [72, 6], [3, 61, 51], [90, 70, 23, 100], [79, 92, 72, 14, 1], [7, 97, 29, 100, 93, 93], [52, 95, 21, 36, 69, 69, 14], [33, 82, 20, 37, 79, 83, 21, 45]] print(minPath(triangle))
Merci pour vos commentaires !
Awesome!
Completion rate improved to 8.33single