Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Problem C. Minimum Path in Triangle | Problems
Dynamic Programming
course content

Contenu du cours

Dynamic Programming

Dynamic Programming

1. Intro to Dynamic Programming
2. Problems
3. Solutions

book
Problem C. Minimum Path in Triangle

The tasks in this section contain test function calls. Please do not change this code; otherwise, the assignment may not be accepted.

Given a triangle array. The bird starts at the top, and for each step, it can move either left or right down (if it is on the index j at the current row, it can move to j or j+1 position on the next row). Return the minimum path cost among all possible paths from top to bottom.

Example 1

The orange path is minimum and costs 12.

Example 2

Input: triangle = [[1], [2, 1], [8, 3, 7], [5, 2, 6, 1]]

Output: 7

Explanation: The path looks like:

Tâche

Swipe to start coding

Implement a function minPath() for triangle array.

  1. Find the rule for shortest path in triangle[i][j].
  2. Define the rule for corner cases.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 3
toggle bottom row

book
Problem C. Minimum Path in Triangle

The tasks in this section contain test function calls. Please do not change this code; otherwise, the assignment may not be accepted.

Given a triangle array. The bird starts at the top, and for each step, it can move either left or right down (if it is on the index j at the current row, it can move to j or j+1 position on the next row). Return the minimum path cost among all possible paths from top to bottom.

Example 1

The orange path is minimum and costs 12.

Example 2

Input: triangle = [[1], [2, 1], [8, 3, 7], [5, 2, 6, 1]]

Output: 7

Explanation: The path looks like:

Tâche

Swipe to start coding

Implement a function minPath() for triangle array.

  1. Find the rule for shortest path in triangle[i][j].
  2. Define the rule for corner cases.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 3
Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Nous sommes désolés de vous informer que quelque chose s'est mal passé. Qu'est-il arrivé ?
some-alt