Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Standard Normal Distribution (Gaussian distribution) 1/2 | Distributions
Probability Theory Update

bookStandard Normal Distribution (Gaussian distribution) 1/2

What is it?

This is a continuous probability distribution for a real-valued random variable.

Key characteristics:

  • The mean value or expectation is equal to 0.
  • The standard deviation to 1.
  • The shape is bell-curved.
  • The distribution is symmetrical. Python realization:

We will generate standard normal distribution with the size 1000 and mean and standard deviation specific to the standard normal distribution. We use the function random.normal() from the numpy library with the parameters: loc is the mean value and scale is the standard deviation.

You can play with the distribution size and see how the distribution will be modified.

123456789
import numpy as np import matplotlib.pyplot as plt import seaborn as sns # Generate standard normal distribution with the size 1000 data = np.random.normal(loc = 0, scale = 1, size = 1000) sns.histplot(data = data, kde = True) plt.show()
copy

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 5. Chapitre 4
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

Suggested prompts:

Résumer ce chapitre

Expliquer le code dans file

Expliquer pourquoi file ne résout pas la tâche

close

Awesome!

Completion rate improved to 3.7

bookStandard Normal Distribution (Gaussian distribution) 1/2

Glissez pour afficher le menu

What is it?

This is a continuous probability distribution for a real-valued random variable.

Key characteristics:

  • The mean value or expectation is equal to 0.
  • The standard deviation to 1.
  • The shape is bell-curved.
  • The distribution is symmetrical. Python realization:

We will generate standard normal distribution with the size 1000 and mean and standard deviation specific to the standard normal distribution. We use the function random.normal() from the numpy library with the parameters: loc is the mean value and scale is the standard deviation.

You can play with the distribution size and see how the distribution will be modified.

123456789
import numpy as np import matplotlib.pyplot as plt import seaborn as sns # Generate standard normal distribution with the size 1000 data = np.random.normal(loc = 0, scale = 1, size = 1000) sns.histplot(data = data, kde = True) plt.show()
copy

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

close

Awesome!

Completion rate improved to 3.7
Section 5. Chapitre 4
single

single

some-alt