Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Aggregating in 2-D Arrays | Introduction to NumPy
Introduction to Data Analysis in Python
course content

Contenu du cours

Introduction to Data Analysis in Python

Introduction to Data Analysis in Python

1. Basics
2. Data Types
3. Control Flow
4. Functions and Modules
5. Introduction to NumPy

book
Aggregating in 2-D Arrays

All the aggregate functions learned in this section can be used along either columns, or rows. To do it, you need to specify the axis parameter within aggregate function.

For example, we can compute the sum of rows and columns elements separately.

1234567
# Import the library import numpy as np # Creating array arr = np.array([[5.2, 3.0, 4.5], [9.1, 0.1, 0.3]]) # Sum of rows and columns elements print(arr.sum(axis = 0)) # columns print(arr.sum(axis = 1)) # rows
copy

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 5. Chapitre 6

Demandez à l'IA

expand
ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

course content

Contenu du cours

Introduction to Data Analysis in Python

Introduction to Data Analysis in Python

1. Basics
2. Data Types
3. Control Flow
4. Functions and Modules
5. Introduction to NumPy

book
Aggregating in 2-D Arrays

All the aggregate functions learned in this section can be used along either columns, or rows. To do it, you need to specify the axis parameter within aggregate function.

For example, we can compute the sum of rows and columns elements separately.

1234567
# Import the library import numpy as np # Creating array arr = np.array([[5.2, 3.0, 4.5], [9.1, 0.1, 0.3]]) # Sum of rows and columns elements print(arr.sum(axis = 0)) # columns print(arr.sum(axis = 1)) # rows
copy

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 5. Chapitre 6
Nous sommes désolés de vous informer que quelque chose s'est mal passé. Qu'est-il arrivé ?
some-alt