Aggregate Functions
You can also calculate aggregate statistics of NumPy arrays, like minimum, maximum, mean, product, sum, etc. These ase realized in NumPy as arrays methods.
| Method | Description |
|---|---|
.mean() | Returns the arithmetic mean |
.sum() | Returns the sum of elements |
.prod() | Returns the product of all elements |
.min() | Returns the minimum of an array |
.max() | Returns the maximum of an array |
.std() | Returns the standard deviation of array elements |
.var() | Returns the variance of array elements |
For example, assume we have two arrays: prices and sales, representing goods' prices and quantity of each good being sold, respectively. Using multiplication and .sum() method we can easily calculate the total revenue.
12345678910# Import the library import numpy as np # Two arrays prices = np.array([15, 60, 40, 5]) sales = np.array([7, 3, 5, 15]) # Revenue per good rev_per_good = prices * sales # Total revenue print("Total revenue is", rev_per_good.sum())
Merci pour vos commentaires !
Demandez à l'IA
Demandez à l'IA
Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion
Posez-moi des questions sur ce sujet
Résumer ce chapitre
Afficher des exemples du monde réel
Awesome!
Completion rate improved to 2.7
Aggregate Functions
Glissez pour afficher le menu
You can also calculate aggregate statistics of NumPy arrays, like minimum, maximum, mean, product, sum, etc. These ase realized in NumPy as arrays methods.
| Method | Description |
|---|---|
.mean() | Returns the arithmetic mean |
.sum() | Returns the sum of elements |
.prod() | Returns the product of all elements |
.min() | Returns the minimum of an array |
.max() | Returns the maximum of an array |
.std() | Returns the standard deviation of array elements |
.var() | Returns the variance of array elements |
For example, assume we have two arrays: prices and sales, representing goods' prices and quantity of each good being sold, respectively. Using multiplication and .sum() method we can easily calculate the total revenue.
12345678910# Import the library import numpy as np # Two arrays prices = np.array([15, 60, 40, 5]) sales = np.array([7, 3, 5, 15]) # Revenue per good rev_per_good = prices * sales # Total revenue print("Total revenue is", rev_per_good.sum())
Merci pour vos commentaires !