Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Challenge: Using DBSCAN Clustering to Detect Outliers | Machine Learning Techniques
Data Anomaly Detection
course content

Contenu du cours

Data Anomaly Detection

Data Anomaly Detection

1. What is Anomaly Detection?
2. Statistical Methods in Anomaly Detection
3. Machine Learning Techniques

book
Challenge: Using DBSCAN Clustering to Detect Outliers

Tâche

Swipe to start coding

Now, you will apply the DBSCAN clustering algorithm to detect outliers on a simple Iris dataset.
You have to:

  1. Specify the parameters of the DBScan algorithm: set eps equal to 0.35 and min_samples equal to 6.
  2. Fit the algorithm and provide clustering.
  3. Get outlier indexes and indexes of normal data. Pay attention that outliers detected by the algorithm have a -1 label.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 2
toggle bottom row

book
Challenge: Using DBSCAN Clustering to Detect Outliers

Tâche

Swipe to start coding

Now, you will apply the DBSCAN clustering algorithm to detect outliers on a simple Iris dataset.
You have to:

  1. Specify the parameters of the DBScan algorithm: set eps equal to 0.35 and min_samples equal to 6.
  2. Fit the algorithm and provide clustering.
  3. Get outlier indexes and indexes of normal data. Pay attention that outliers detected by the algorithm have a -1 label.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 2
Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
We're sorry to hear that something went wrong. What happened?
some-alt