Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Challenge: LOF in Practice | Density-Based Methods
Quizzes & Challenges
Quizzes
Challenges
/
Outlier and Novelty Detection in Python

bookChallenge: LOF in Practice

Tâche

Swipe to start coding

You are given a 2D dataset with clusters and some outliers. Your task is to apply Local Outlier Factor (LOF) from sklearn.neighbors to identify which samples are locally inconsistent (low-density points).

Steps:

  1. Import and initialize LocalOutlierFactor with n_neighbors=20, contamination=0.1.
  2. Fit the model on X and obtain predictions via .fit_predict(X).
  3. Extract negative outlier factor values (model.negative_outlier_factor_).
  4. Print the number of detected outliers and example scores.

Remember:

  • -1 = outlier;
  • 1 = inlier.

Solution

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 4. Chapitre 4
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

close

Awesome!

Completion rate improved to 4.55

bookChallenge: LOF in Practice

Glissez pour afficher le menu

Tâche

Swipe to start coding

You are given a 2D dataset with clusters and some outliers. Your task is to apply Local Outlier Factor (LOF) from sklearn.neighbors to identify which samples are locally inconsistent (low-density points).

Steps:

  1. Import and initialize LocalOutlierFactor with n_neighbors=20, contamination=0.1.
  2. Fit the model on X and obtain predictions via .fit_predict(X).
  3. Extract negative outlier factor values (model.negative_outlier_factor_).
  4. Print the number of detected outliers and example scores.

Remember:

  • -1 = outlier;
  • 1 = inlier.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 4. Chapitre 4
single

single

some-alt