Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Types Conversion | Data Validation
Preprocessing Data
course content

Contenu du cours

Preprocessing Data

Preprocessing Data

1. Data Exploration
2. Data Cleaning
3. Data Validation
4. Normalization & Standardization
5. Data Encoding

book
Types Conversion

You can discover that data can be stored in the dataset in the wrong format or type. The most common cases are:

  • storing integer or float values as string variables.
  • storing date and time values as strings.
  • storing values in a form that can be converted to a more suitable one.

Let's explore the dataset exercise containing info about diet, pulse, time, and kind of different exercises. There is sample data:

unnamediddietpulsetimekind
3512low fat10430 minwalking
6422low fat10415 minrunning
104low fat8215 minrest
187no fat871 minrest
4817no fat1031 minwalking

It makes sense to modify the time column data: all rows contain the duration in minutes, so info about time units (min, sec, ot hours) is useless. We're gonna remove the extra symbols and store only numerical values, which additionally will be converted to int.

Tâche

Swipe to start coding

Apply the type conversion to the time column. Remove the last 4 symbols which are equal to min and convert the rest to int. Check the sample.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 1
toggle bottom row

book
Types Conversion

You can discover that data can be stored in the dataset in the wrong format or type. The most common cases are:

  • storing integer or float values as string variables.
  • storing date and time values as strings.
  • storing values in a form that can be converted to a more suitable one.

Let's explore the dataset exercise containing info about diet, pulse, time, and kind of different exercises. There is sample data:

unnamediddietpulsetimekind
3512low fat10430 minwalking
6422low fat10415 minrunning
104low fat8215 minrest
187no fat871 minrest
4817no fat1031 minwalking

It makes sense to modify the time column data: all rows contain the duration in minutes, so info about time units (min, sec, ot hours) is useless. We're gonna remove the extra symbols and store only numerical values, which additionally will be converted to int.

Tâche

Swipe to start coding

Apply the type conversion to the time column. Remove the last 4 symbols which are equal to min and convert the rest to int. Check the sample.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 1
Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
We're sorry to hear that something went wrong. What happened?
some-alt