Explore the Dataset
Before you start, it's important to take a look at the data you'll work with. There is a list of useful methods which can be applied to the pandas
dataframes:
123456789101112131415161718192021# info about the dataframe shape, data types data.info() # the size of the dataframe data.shape # list of the columns data.columns # returns all distinct values containing in the column called ColumnName data['ColumnName'].unique() # returns the metrics: mean, mode, min, max etc. data.describe() # returns top 5 rows data.head() # returns top 10 rows (or any other number you'll pass) data.head(10) # returns bottom 5 rows data.tail() # returns bottom 10 rows (or any other number) data.tail(10) # returns 10 random rows data.sample(10)
Swipe to start coding
For given dataset data
, extract and print 5 rows using sample()
function.
Find all the columns' names and put them to the cols
variable.
Find the unique values for each column and output these values.
Solution
Merci pour vos commentaires !
single
Demandez à l'IA
Demandez à l'IA
Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion
Awesome!
Completion rate improved to 5.56
Explore the Dataset
Glissez pour afficher le menu
Before you start, it's important to take a look at the data you'll work with. There is a list of useful methods which can be applied to the pandas
dataframes:
123456789101112131415161718192021# info about the dataframe shape, data types data.info() # the size of the dataframe data.shape # list of the columns data.columns # returns all distinct values containing in the column called ColumnName data['ColumnName'].unique() # returns the metrics: mean, mode, min, max etc. data.describe() # returns top 5 rows data.head() # returns top 10 rows (or any other number you'll pass) data.head(10) # returns bottom 5 rows data.tail() # returns bottom 10 rows (or any other number) data.tail(10) # returns 10 random rows data.sample(10)
Swipe to start coding
For given dataset data
, extract and print 5 rows using sample()
function.
Find all the columns' names and put them to the cols
variable.
Find the unique values for each column and output these values.
Solution
Merci pour vos commentaires !
Awesome!
Completion rate improved to 5.56single