Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Challenge: Access & Ticket Perks Engine | Bring It All Together
Data Types in Python

bookChallenge: Access & Ticket Perks Engine

Tâche

Swipe to start coding

Fill in the expressions using only variables, basic operators, and the tools we covered: strip, casefold, int, slicing, comparisons, and logical operators.

Compute:

  1. age - convert age_str to an integer.

  2. has_id - convert has_id_str to a Boolean by normalizing text and comparing to "yes".

  3. Parse ticket_code into tier, seat_number_str, zone using slicing by fixed positions.

  4. seat_number - convert seat_number_str to an integer.

  5. Rules

    • is_adult: age is at least adult_age.
    • can_enter: must have ID and be an adult.
    • vip_perk: tier is "VIP".
    • member_fastlane: user is a member and can enter.
    • seat_ok: seat_number is in the inclusive range from 1 to max_seat_number using a chained comparison.
    • entry_granted: can_enter and seat_ok.
  6. summary - f-string: "{tier}-{seat_number_str}-{zone} | age={age} | enter={entry_granted} | vip={vip_perk} | fastlane={member_fastlane}".

Solution

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 5. Chapitre 1
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

Suggested prompts:

Can you explain this in simpler terms?

What are the main points I should remember?

Can you give me an example?

close

Awesome!

Completion rate improved to 5

bookChallenge: Access & Ticket Perks Engine

Glissez pour afficher le menu

Tâche

Swipe to start coding

Fill in the expressions using only variables, basic operators, and the tools we covered: strip, casefold, int, slicing, comparisons, and logical operators.

Compute:

  1. age - convert age_str to an integer.

  2. has_id - convert has_id_str to a Boolean by normalizing text and comparing to "yes".

  3. Parse ticket_code into tier, seat_number_str, zone using slicing by fixed positions.

  4. seat_number - convert seat_number_str to an integer.

  5. Rules

    • is_adult: age is at least adult_age.
    • can_enter: must have ID and be an adult.
    • vip_perk: tier is "VIP".
    • member_fastlane: user is a member and can enter.
    • seat_ok: seat_number is in the inclusive range from 1 to max_seat_number using a chained comparison.
    • entry_granted: can_enter and seat_ok.
  6. summary - f-string: "{tier}-{seat_number_str}-{zone} | age={age} | enter={entry_granted} | vip={vip_perk} | fastlane={member_fastlane}".

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

close

Awesome!

Completion rate improved to 5
Section 5. Chapitre 1
single

single

some-alt