Challenge: Regression Metrics
Swipe to start coding
You are given a linear regression task using the diabetes dataset from scikit-learn.
Your goal is to train a model, compute key regression evaluation metrics, and validate the model using cross-validation.
Perform the following steps:
- Load the
diabetesdataset. - Split the data into training and testing sets.
- Train a Linear Regression model.
- Predict on the test set and compute:
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Error (MAE)
- R² Score
- Perform 5-fold cross-validation using the model.
Use
scoring="r2"as the estimator for cross-validation. - Print all metrics in a readable format.
Ratkaisu
Kiitos palautteestasi!
single
Kysy tekoälyä
Kysy tekoälyä
Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme
Can you explain this in simpler terms?
What are some examples related to this topic?
Where can I learn more about this?
Awesome!
Completion rate improved to 6.25
Challenge: Regression Metrics
Pyyhkäise näyttääksesi valikon
Swipe to start coding
You are given a linear regression task using the diabetes dataset from scikit-learn.
Your goal is to train a model, compute key regression evaluation metrics, and validate the model using cross-validation.
Perform the following steps:
- Load the
diabetesdataset. - Split the data into training and testing sets.
- Train a Linear Regression model.
- Predict on the test set and compute:
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Error (MAE)
- R² Score
- Perform 5-fold cross-validation using the model.
Use
scoring="r2"as the estimator for cross-validation. - Print all metrics in a readable format.
Ratkaisu
Kiitos palautteestasi!
single