Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Challenge: Feature Selection Pipeline | Feature Selection Strategies
Feature Selection and Regularization Techniques

bookChallenge: Feature Selection Pipeline

Tehtävä

Swipe to start coding

You will build a feature selection + regression pipeline to predict disease progression using the Diabetes dataset. Your goal is to combine preprocessing, feature selection, and model training in one efficient workflow.

Follow these steps:

  1. Load the dataset using load_diabetes().
  2. Split it into train/test sets (test_size=0.3, random_state=42).
  3. Build a pipeline with:
    • StandardScaler().
    • SelectFromModel(Lasso(alpha=0.01, random_state=42)) for automatic feature selection.
    • LinearRegression() as the final model.
  4. Fit the pipeline and evaluate it using R² score on the test set.
  5. Print:
    • The R² score (rounded to 3 decimals).
    • The number of features selected.

Ratkaisu

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 4
single

single

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

Suggested prompts:

Can you explain that in more detail?

What are the main benefits or drawbacks?

Can you provide an example?

close

Awesome!

Completion rate improved to 8.33

bookChallenge: Feature Selection Pipeline

Pyyhkäise näyttääksesi valikon

Tehtävä

Swipe to start coding

You will build a feature selection + regression pipeline to predict disease progression using the Diabetes dataset. Your goal is to combine preprocessing, feature selection, and model training in one efficient workflow.

Follow these steps:

  1. Load the dataset using load_diabetes().
  2. Split it into train/test sets (test_size=0.3, random_state=42).
  3. Build a pipeline with:
    • StandardScaler().
    • SelectFromModel(Lasso(alpha=0.01, random_state=42)) for automatic feature selection.
    • LinearRegression() as the final model.
  4. Fit the pipeline and evaluate it using R² score on the test set.
  5. Print:
    • The R² score (rounded to 3 decimals).
    • The number of features selected.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 4
single

single

some-alt