Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Challenge: Estimate Parameters of Chi-square Distribution | Estimation of Population Parameters
Advanced Probability Theory
course content

Kurssisisältö

Advanced Probability Theory

Advanced Probability Theory

1. Additional Statements From The Probability Theory
2. The Limit Theorems of Probability Theory
3. Estimation of Population Parameters
4. Testing of Statistical Hypotheses

book
Challenge: Estimate Parameters of Chi-square Distribution

Tehtävä

Swipe to start coding

Suppose that we have samples from the Chi-square distribution. We must determine the parameter K of this distribution, which represents the number of degrees of freedom.
We know that the mathematical expectation of the Chi-square distributes value is equal to this parameter K.
Estimate this parameter using the method of moments and the maximum likelihood method. Since the number of degrees of freedom can only be discrete, round the resulting number to the nearest integer.
Your task is:

  1. Calculate the mean value over samples using .mean() method.
  2. Use .fit() method to get maximum likelihood estimation for the parameter.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 3. Luku 3
toggle bottom row

book
Challenge: Estimate Parameters of Chi-square Distribution

Tehtävä

Swipe to start coding

Suppose that we have samples from the Chi-square distribution. We must determine the parameter K of this distribution, which represents the number of degrees of freedom.
We know that the mathematical expectation of the Chi-square distributes value is equal to this parameter K.
Estimate this parameter using the method of moments and the maximum likelihood method. Since the number of degrees of freedom can only be discrete, round the resulting number to the nearest integer.
Your task is:

  1. Calculate the mean value over samples using .mean() method.
  2. Use .fit() method to get maximum likelihood estimation for the parameter.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 3. Luku 3
Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Pahoittelemme, että jotain meni pieleen. Mitä tapahtui?
some-alt