Interpolation vs Extrapolation
In the previous section, it was observed that predictions from different models tend to diverge more significantly at the edges of the data.
To be more precise, the predictions start to exhibit unusual behavior when we go beyond the range of values present in the training set.
Predicting values outside the range of the training set is referred to as extrapolation, while predicting values within the range is called interpolation.
Regression models are not well-suited for handling extrapolation.
They are primarily used for interpolation and may produce unreliable or nonsensical predictions when new instances fall outside the range of the training set.
Kiitos palautteestasi!
Kysy tekoälyä
Kysy tekoälyä
Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme
Kysy minulta kysymyksiä tästä aiheesta
Tiivistä tämä luku
Näytä käytännön esimerkkejä
Awesome!
Completion rate improved to 5.56
Interpolation vs Extrapolation
Pyyhkäise näyttääksesi valikon
In the previous section, it was observed that predictions from different models tend to diverge more significantly at the edges of the data.
To be more precise, the predictions start to exhibit unusual behavior when we go beyond the range of values present in the training set.
Predicting values outside the range of the training set is referred to as extrapolation, while predicting values within the range is called interpolation.
Regression models are not well-suited for handling extrapolation.
They are primarily used for interpolation and may produce unreliable or nonsensical predictions when new instances fall outside the range of the training set.
Kiitos palautteestasi!