Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Building ARIMA Models in Python | Implementing ARIMA for Forecasting
Time Series Forecasting with ARIMA

bookBuilding ARIMA Models in Python

To build accurate forecasts with ARIMA, you need a structured workflow that ensures your models are both robust and interpretable. The ARIMA modeling process in Python typically follows these key steps: data preparation, parameter selection, and model fitting.

You begin by preparing your time series data—this includes loading the data, handling missing values, and verifying stationarity. If your data is not stationary, you may need to difference it or apply transformations.

Afterward, you select the ARIMA model parameters: the order of the autoregressive part (p), the degree of differencing (d), and the order of the moving average part (q). This selection can be guided by examining autocorrelation and partial autocorrelation plots, as well as using information criteria such as AIC or BIC.

Once parameters are chosen, you fit the ARIMA model to your data using Python libraries, assess the model fit, and prepare for forecasting.

Tips for ARIMA Parameter Selection and Avoiding Overfitting:

  • Use autocorrelation (ACF) and partial autocorrelation (PACF) plots to guide your choice of p and q values;
  • Start with a simple model and increase complexity only if necessary;
  • Evaluate models using information criteria (AIC/BIC) to penalize unnecessary complexity;
  • Always check residuals for autocorrelation—if present, your model may be underfitting;
  • Avoid overfitting by not making p and q too large relative to your data length.
1234567891011121314151617181920212223242526272829
import pandas as pd import numpy as np import matplotlib.pyplot as plt from statsmodels.tsa.arima.model import ARIMA # Generate a simple time series dataset date_rng = pd.date_range(start="2020-01-01", end="2020-04-30", freq="D") # Generate data with trend + random noise ts_data = pd.Series( 10 + 0.5 * np.arange(len(date_rng)) + np.random.normal(0, 2, len(date_rng)), index=date_rng ) # Plot the time series plt.figure(figsize=(10, 4)) plt.plot(ts_data) plt.title("Sample Time Series Data") plt.xlabel("Date") plt.ylabel("Value") plt.grid(True) plt.show() # Fit an ARIMA(1,1,1) model model = ARIMA(ts_data, order=(1, 1, 1)) model_fit = model.fit() # Print model summary print(model_fit.summary())
copy
question mark

What is the correct sequence when building an ARIMA model in Python, according to the recommended workflow in this chapter?

Select the correct answer

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 3. Luku 1

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

Awesome!

Completion rate improved to 6.67

bookBuilding ARIMA Models in Python

Pyyhkäise näyttääksesi valikon

To build accurate forecasts with ARIMA, you need a structured workflow that ensures your models are both robust and interpretable. The ARIMA modeling process in Python typically follows these key steps: data preparation, parameter selection, and model fitting.

You begin by preparing your time series data—this includes loading the data, handling missing values, and verifying stationarity. If your data is not stationary, you may need to difference it or apply transformations.

Afterward, you select the ARIMA model parameters: the order of the autoregressive part (p), the degree of differencing (d), and the order of the moving average part (q). This selection can be guided by examining autocorrelation and partial autocorrelation plots, as well as using information criteria such as AIC or BIC.

Once parameters are chosen, you fit the ARIMA model to your data using Python libraries, assess the model fit, and prepare for forecasting.

Tips for ARIMA Parameter Selection and Avoiding Overfitting:

  • Use autocorrelation (ACF) and partial autocorrelation (PACF) plots to guide your choice of p and q values;
  • Start with a simple model and increase complexity only if necessary;
  • Evaluate models using information criteria (AIC/BIC) to penalize unnecessary complexity;
  • Always check residuals for autocorrelation—if present, your model may be underfitting;
  • Avoid overfitting by not making p and q too large relative to your data length.
1234567891011121314151617181920212223242526272829
import pandas as pd import numpy as np import matplotlib.pyplot as plt from statsmodels.tsa.arima.model import ARIMA # Generate a simple time series dataset date_rng = pd.date_range(start="2020-01-01", end="2020-04-30", freq="D") # Generate data with trend + random noise ts_data = pd.Series( 10 + 0.5 * np.arange(len(date_rng)) + np.random.normal(0, 2, len(date_rng)), index=date_rng ) # Plot the time series plt.figure(figsize=(10, 4)) plt.plot(ts_data) plt.title("Sample Time Series Data") plt.xlabel("Date") plt.ylabel("Value") plt.grid(True) plt.show() # Fit an ARIMA(1,1,1) model model = ARIMA(ts_data, order=(1, 1, 1)) model_fit = model.fit() # Print model summary print(model_fit.summary())
copy
question mark

What is the correct sequence when building an ARIMA model in Python, according to the recommended workflow in this chapter?

Select the correct answer

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 3. Luku 1
some-alt