Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Probabilistic Latent Variables In VAEs | Variational Autoencoders
Autoencoders and Representation Learning

bookProbabilistic Latent Variables In VAEs

When working with variational autoencoders (VAEs), you move beyond mapping each input to a single point in the latent space. Instead, VAEs use a probabilistic encoding: each input is mapped to a probability distribution over possible latent variables. Rather than compressing an input directly into a fixed vector, the encoder produces two outputs for each input: a mean (μμ) and a variance (σ2σ²). These parameters define a normal distribution in the latent space for each data point, allowing the model to capture uncertainty and variability in how inputs are represented.

Note
Definition

A probabilistic latent variable is a variable in a model that is not assigned a fixed value, but rather is drawn from a probability distribution. In VAEs, this approach enables the model to generate diverse outputs and capture the inherent randomness in data, which is crucial for effective generative modeling.

Mathematically, this process is written as:

zN(μ(x),σ2(x))z \sim N(μ(x), σ²(x))

Here, zz is the latent variable, and it is sampled from a normal distribution whose mean μ(x)μ(x) and variance σ2(x)σ²(x) are both functions of the input xx. This means that for each data point, the encoder network outputs the parameters for its own unique distribution in the latent space, rather than a single deterministic code.

1. What distinguishes a probabilistic latent variable from a deterministic one?

2. Why do VAEs use distributions instead of point estimates for latent variables?

3. Fill in the blank

question mark

What distinguishes a probabilistic latent variable from a deterministic one?

Select the correct answer

question mark

Why do VAEs use distributions instead of point estimates for latent variables?

Select the correct answer

question-icon

Fill in the blank

In VAEs, the encoder outputs parameters of a distribution.

Click or drag`n`drop items and fill in the blanks

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 4. Luku 1

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

bookProbabilistic Latent Variables In VAEs

Pyyhkäise näyttääksesi valikon

When working with variational autoencoders (VAEs), you move beyond mapping each input to a single point in the latent space. Instead, VAEs use a probabilistic encoding: each input is mapped to a probability distribution over possible latent variables. Rather than compressing an input directly into a fixed vector, the encoder produces two outputs for each input: a mean (μμ) and a variance (σ2σ²). These parameters define a normal distribution in the latent space for each data point, allowing the model to capture uncertainty and variability in how inputs are represented.

Note
Definition

A probabilistic latent variable is a variable in a model that is not assigned a fixed value, but rather is drawn from a probability distribution. In VAEs, this approach enables the model to generate diverse outputs and capture the inherent randomness in data, which is crucial for effective generative modeling.

Mathematically, this process is written as:

zN(μ(x),σ2(x))z \sim N(μ(x), σ²(x))

Here, zz is the latent variable, and it is sampled from a normal distribution whose mean μ(x)μ(x) and variance σ2(x)σ²(x) are both functions of the input xx. This means that for each data point, the encoder network outputs the parameters for its own unique distribution in the latent space, rather than a single deterministic code.

1. What distinguishes a probabilistic latent variable from a deterministic one?

2. Why do VAEs use distributions instead of point estimates for latent variables?

3. Fill in the blank

question mark

What distinguishes a probabilistic latent variable from a deterministic one?

Select the correct answer

question mark

Why do VAEs use distributions instead of point estimates for latent variables?

Select the correct answer

question-icon

Fill in the blank

In VAEs, the encoder outputs parameters of a distribution.

Click or drag`n`drop items and fill in the blanks

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 4. Luku 1
some-alt