Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Multi-Class Classification | k-NN Classifier
Classification with Python

Pyyhkäise näyttääksesi valikon

book
Multi-Class Classification

Multi-class classification with k-NN is as easy as binary classification. We just pick the class that prevails in the neighborhood.

The KNeighborsClassifier automatically performs a multi-class classification if y has more than two features, so you do not need to change anything. The only thing that changes is the y variable fed to the .fit() method.

Now, you will perform a multi-class classification with k-NN. Consider the following dataset:

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b71ff7ac-3932-41d2-a4d8-060e24b00129/starwars_multiple.csv') print(df.head())
copy

It is the same as in the previous chapter's example, but now the target can take three values:

  • 0: "Hated it" (rating is less than 3/5);
  • 1: "Meh" (rating between 3/5 and 4/5);
  • 2: "Liked it" (rating is 4/5 or higher).
Tehtävä

Swipe to start coding

You are given the Star Wars ratings dataset stored as a DataFrame in the df variable.

  • Initialize an appropriate scaler and store it in the scaler variable.
  • Calculate the scaling parameters on the training data, scale it, and store the result in the X_train variable.
  • Scale the test data and store the result in the X_test variable.
  • Create an instance of k-NN with 13 neighbors, train it on the training set, and store it in the knn variable.
  • Make predictions on the test set and store them in the y_pred variable.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 1. Luku 5
single

single

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

close

Awesome!

Completion rate improved to 4.17

book
Multi-Class Classification

Multi-class classification with k-NN is as easy as binary classification. We just pick the class that prevails in the neighborhood.

The KNeighborsClassifier automatically performs a multi-class classification if y has more than two features, so you do not need to change anything. The only thing that changes is the y variable fed to the .fit() method.

Now, you will perform a multi-class classification with k-NN. Consider the following dataset:

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b71ff7ac-3932-41d2-a4d8-060e24b00129/starwars_multiple.csv') print(df.head())
copy

It is the same as in the previous chapter's example, but now the target can take three values:

  • 0: "Hated it" (rating is less than 3/5);
  • 1: "Meh" (rating between 3/5 and 4/5);
  • 2: "Liked it" (rating is 4/5 or higher).
Tehtävä

Swipe to start coding

You are given the Star Wars ratings dataset stored as a DataFrame in the df variable.

  • Initialize an appropriate scaler and store it in the scaler variable.
  • Calculate the scaling parameters on the training data, scale it, and store the result in the X_train variable.
  • Scale the test data and store the result in the X_test variable.
  • Create an instance of k-NN with 13 neighbors, train it on the training set, and store it in the knn variable.
  • Make predictions on the test set and store them in the y_pred variable.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

close

Awesome!

Completion rate improved to 4.17

Pyyhkäise näyttääksesi valikon

some-alt