Creating Bar Plots
Why Use Bar Plots?
Bar plots are one of the most common ways to visualize categorical data. They help us quickly:
-
Compare counts or frequencies of categories;
-
Visualize group-wise summaries (like average price per fuel type);
-
Understand relationships between two categorical variables using grouped or stacked bars.
Whether you're showing the number of cars by fuel type or comparing transmission modes across fuels, bar plots make categorical comparisons clear and intuitive.
Bar Plot Syntax in ggplot2
ggplot(data = df, aes(x = category)) +
geom_bar()
-
If only
x
is provided,geom_bar()
automatically counts the number of observations; -
If
y
is also provided, you need to addstat = "identity"
to use actual values.
Example: Count of Cars by Fuel Type
ggplot(df, aes(x = fuel)) +
geom_bar(fill = "lightblue", color = "red") +
labs(title = "Car Distribution by Fuel Type", x = "Fuel Type", y = "Count") +
theme_minimal()
This plot shows the number of cars available for each type of fuel.
Kiitos palautteestasi!
Kysy tekoälyä
Kysy tekoälyä
Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme
Awesome!
Completion rate improved to 4
Creating Bar Plots
Pyyhkäise näyttääksesi valikon
Why Use Bar Plots?
Bar plots are one of the most common ways to visualize categorical data. They help us quickly:
-
Compare counts or frequencies of categories;
-
Visualize group-wise summaries (like average price per fuel type);
-
Understand relationships between two categorical variables using grouped or stacked bars.
Whether you're showing the number of cars by fuel type or comparing transmission modes across fuels, bar plots make categorical comparisons clear and intuitive.
Bar Plot Syntax in ggplot2
ggplot(data = df, aes(x = category)) +
geom_bar()
-
If only
x
is provided,geom_bar()
automatically counts the number of observations; -
If
y
is also provided, you need to addstat = "identity"
to use actual values.
Example: Count of Cars by Fuel Type
ggplot(df, aes(x = fuel)) +
geom_bar(fill = "lightblue", color = "red") +
labs(title = "Car Distribution by Fuel Type", x = "Fuel Type", y = "Count") +
theme_minimal()
This plot shows the number of cars available for each type of fuel.
Kiitos palautteestasi!