Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Visualizing and Logging Metrics | Monitoring and Continuous Delivery
MLOps for Machine Learning Engineers

bookVisualizing and Logging Metrics

123456789101112131415161718192021
import matplotlib.pyplot as plt import numpy as np # Simulate model metric logging over 12 weeks weeks = np.arange(1, 13) accuracy = np.array([0.89, 0.90, 0.91, 0.91, 0.92, 0.91, 0.90, 0.89, 0.87, 0.85, 0.86, 0.86]) precision = np.array([0.88, 0.88, 0.89, 0.90, 0.89, 0.89, 0.88, 0.87, 0.86, 0.84, 0.85, 0.85]) recall = np.array([0.87, 0.88, 0.90, 0.89, 0.91, 0.90, 0.88, 0.86, 0.85, 0.83, 0.84, 0.84]) plt.figure(figsize=(10, 6)) plt.plot(weeks, accuracy, marker='o', label='Accuracy') plt.plot(weeks, precision, marker='s', label='Precision') plt.plot(weeks, recall, marker='^', label='Recall') plt.axhline(0.88, color='red', linestyle='--', label='Alert Threshold') plt.title('Model Metrics Over Time') plt.xlabel('Week') plt.ylabel('Metric Value') plt.ylim(0.8, 1.0) plt.legend() plt.grid(True) plt.show()
copy

When you monitor model metrics such as accuracy, precision, and recall over time, you gain insight into your model's ongoing performance. Consistent values suggest stable behavior, while noticeable drops—especially below a predefined threshold—can signal underlying issues. A sudden decline in accuracy, for instance, may indicate data drift, changes in user behavior, or upstream data quality problems.

To proactively maintain model reliability, you should set up alerts that trigger when metrics fall below critical thresholds. These alerts can be as simple as email notifications or as sophisticated as automated retraining jobs. The key is to respond quickly to performance changes, minimizing any negative impact on users or business outcomes.

Note
Note

Monitoring should include both model and data quality metrics.

question mark

Why is it important to monitor both model and data quality metrics in production machine learning systems?

Select the correct answer

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 5. Luku 3

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

Awesome!

Completion rate improved to 6.25

bookVisualizing and Logging Metrics

Pyyhkäise näyttääksesi valikon

123456789101112131415161718192021
import matplotlib.pyplot as plt import numpy as np # Simulate model metric logging over 12 weeks weeks = np.arange(1, 13) accuracy = np.array([0.89, 0.90, 0.91, 0.91, 0.92, 0.91, 0.90, 0.89, 0.87, 0.85, 0.86, 0.86]) precision = np.array([0.88, 0.88, 0.89, 0.90, 0.89, 0.89, 0.88, 0.87, 0.86, 0.84, 0.85, 0.85]) recall = np.array([0.87, 0.88, 0.90, 0.89, 0.91, 0.90, 0.88, 0.86, 0.85, 0.83, 0.84, 0.84]) plt.figure(figsize=(10, 6)) plt.plot(weeks, accuracy, marker='o', label='Accuracy') plt.plot(weeks, precision, marker='s', label='Precision') plt.plot(weeks, recall, marker='^', label='Recall') plt.axhline(0.88, color='red', linestyle='--', label='Alert Threshold') plt.title('Model Metrics Over Time') plt.xlabel('Week') plt.ylabel('Metric Value') plt.ylim(0.8, 1.0) plt.legend() plt.grid(True) plt.show()
copy

When you monitor model metrics such as accuracy, precision, and recall over time, you gain insight into your model's ongoing performance. Consistent values suggest stable behavior, while noticeable drops—especially below a predefined threshold—can signal underlying issues. A sudden decline in accuracy, for instance, may indicate data drift, changes in user behavior, or upstream data quality problems.

To proactively maintain model reliability, you should set up alerts that trigger when metrics fall below critical thresholds. These alerts can be as simple as email notifications or as sophisticated as automated retraining jobs. The key is to respond quickly to performance changes, minimizing any negative impact on users or business outcomes.

Note
Note

Monitoring should include both model and data quality metrics.

question mark

Why is it important to monitor both model and data quality metrics in production machine learning systems?

Select the correct answer

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 5. Luku 3
some-alt