Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Finding Null Values | Analyzing the Data
Pandas First Steps
course content

Kurssisisältö

Pandas First Steps

Pandas First Steps

1. The Very First Steps
2. Reading Files in Pandas
3. Analyzing the Data

book
Finding Null Values

DataFrames often contain missing values, represented as None or NaN. When working with DataFrames, it's essential to identify these missing values because they can distort calculations, lead to inaccurate analyses, and compromise the reliability of results.

Addressing them ensures data integrity and improves the performance of tasks like statistical analysis and machine learning. For this purpose, pandas offers specific methods.

The first of these is isna(), which returns a boolean DataFrame. In this context, a True value indicates a missing value within the DataFrame, while a False value suggests the value is present.

For clarity, we'll apply this method on the animals DataFrame. The isna() method will return a DataFrame filled with True/False values, where each True value represents a missing value in the animals DataFrame.

123456789
import pandas as pd import numpy as np animals_data = {'animal': [np.NaN, 'Dog', np.NaN, 'Cat','Parrot', None], 'name': ['Dolly', None, 'Erin', 'Kelly', None, 'Odie']} animals = pd.DataFrame(animals_data) # Find missing values missing_values = animals.isna() print(missing_values)
copy

The second method is isnull(). It behaves identically to the previous one, with no discernible difference between them.

Tehtävä

Swipe to start coding

You are given a DataFrame named wine_data.

  • Retrieve the missing values in this DataFrame and store the result in the missing_values variable.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 3. Luku 6
toggle bottom row

book
Finding Null Values

DataFrames often contain missing values, represented as None or NaN. When working with DataFrames, it's essential to identify these missing values because they can distort calculations, lead to inaccurate analyses, and compromise the reliability of results.

Addressing them ensures data integrity and improves the performance of tasks like statistical analysis and machine learning. For this purpose, pandas offers specific methods.

The first of these is isna(), which returns a boolean DataFrame. In this context, a True value indicates a missing value within the DataFrame, while a False value suggests the value is present.

For clarity, we'll apply this method on the animals DataFrame. The isna() method will return a DataFrame filled with True/False values, where each True value represents a missing value in the animals DataFrame.

123456789
import pandas as pd import numpy as np animals_data = {'animal': [np.NaN, 'Dog', np.NaN, 'Cat','Parrot', None], 'name': ['Dolly', None, 'Erin', 'Kelly', None, 'Odie']} animals = pd.DataFrame(animals_data) # Find missing values missing_values = animals.isna() print(missing_values)
copy

The second method is isnull(). It behaves identically to the previous one, with no discernible difference between them.

Tehtävä

Swipe to start coding

You are given a DataFrame named wine_data.

  • Retrieve the missing values in this DataFrame and store the result in the missing_values variable.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 3. Luku 6
Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Pahoittelemme, että jotain meni pieleen. Mitä tapahtui?
some-alt