Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Label Encoding of the Target Variable | Processing Categorical Data
Data Preprocessing
course content

Kurssisisältö

Data Preprocessing

Data Preprocessing

1. Brief Introduction
2. Processing Quantitative Data
3. Processing Categorical Data
4. Time Series Data Processing
5. Feature Engineering
6. Moving on to Tasks

book
Label Encoding of the Target Variable

Let's go straight to the main thing - label encoding implements everything the same as ordinal encoder, but:

  • Methods work with different data dimensions;
  • The order of the categories is not important for label encoding.

How to use this method in Python:

1234567891011121314
from sklearn.preprocessing import LabelEncoder import pandas as pd # Simple categorical variable fruits = pd.Series(['apple', 'orange', 'banana', 'banana', 'apple', 'orange', 'banana']) # Create label encoder object le = LabelEncoder() # Fit and transform the categorical variable using label encoding fruits_encoded = le.fit_transform(fruits) # Print the encoded values print(fruits_encoded)
copy
Tehtävä

Swipe to start coding

Read the dataset 'salary_and_gender.csv' and encode the output column 'Gender' with label encoding.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 3. Luku 4
toggle bottom row

book
Label Encoding of the Target Variable

Let's go straight to the main thing - label encoding implements everything the same as ordinal encoder, but:

  • Methods work with different data dimensions;
  • The order of the categories is not important for label encoding.

How to use this method in Python:

1234567891011121314
from sklearn.preprocessing import LabelEncoder import pandas as pd # Simple categorical variable fruits = pd.Series(['apple', 'orange', 'banana', 'banana', 'apple', 'orange', 'banana']) # Create label encoder object le = LabelEncoder() # Fit and transform the categorical variable using label encoding fruits_encoded = le.fit_transform(fruits) # Print the encoded values print(fruits_encoded)
copy
Tehtävä

Swipe to start coding

Read the dataset 'salary_and_gender.csv' and encode the output column 'Gender' with label encoding.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 3. Luku 4
Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Pahoittelemme, että jotain meni pieleen. Mitä tapahtui?
some-alt