Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Challenge 1: List Comprehension | Python
Data Science Interview Challenge
course content

Kurssisisältö

Data Science Interview Challenge

Data Science Interview Challenge

1. Python
2. NumPy
3. Pandas
4. Matplotlib
5. Seaborn
6. Statistics
7. Scikit-learn

book
Challenge 1: List Comprehension

List comprehensions in Python provide an elegant and concise way to create lists. Their advantages are:

  • Readability and conciseness: List comprehensions allow you to reduce the amount of code, making it more readable and concise. Instead of using multiple lines of code with loops and conditional statements, you can get the same result in one line.
  • Performance: In many cases, list comprehensions are faster than traditional loops, especially when processing large amounts of data, which is key in Data Science.
  • Built-in filtering capabilities: These allow you to easily apply conditional expressions to filter data, which is especially useful when preprocessing and cleaning datasets.

Thus, list comprehensions are a powerful tool in the hands of a data scientist, allowing you to quickly and efficiently process and transform data.

Tehtävä

Swipe to start coding

Given a list of numbers, write a Python function to square all even numbers in the list. List [1, 2, 3, 4, 5] should result into [4, 16].

List Comprehention

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 1. Luku 2
toggle bottom row

book
Challenge 1: List Comprehension

List comprehensions in Python provide an elegant and concise way to create lists. Their advantages are:

  • Readability and conciseness: List comprehensions allow you to reduce the amount of code, making it more readable and concise. Instead of using multiple lines of code with loops and conditional statements, you can get the same result in one line.
  • Performance: In many cases, list comprehensions are faster than traditional loops, especially when processing large amounts of data, which is key in Data Science.
  • Built-in filtering capabilities: These allow you to easily apply conditional expressions to filter data, which is especially useful when preprocessing and cleaning datasets.

Thus, list comprehensions are a powerful tool in the hands of a data scientist, allowing you to quickly and efficiently process and transform data.

Tehtävä

Swipe to start coding

Given a list of numbers, write a Python function to square all even numbers in the list. List [1, 2, 3, 4, 5] should result into [4, 16].

List Comprehention

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 1. Luku 2
Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Pahoittelemme, että jotain meni pieleen. Mitä tapahtui?
some-alt