Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Challenge 3: Relational Plots | Seaborn
Data Science Interview Challenge
course content

Kurssisisältö

Data Science Interview Challenge

Data Science Interview Challenge

1. Python
2. NumPy
3. Pandas
4. Matplotlib
5. Seaborn
6. Statistics
7. Scikit-learn

book
Challenge 3: Relational Plots

Understanding relationships between variables is essential in data analysis. A robust way to visualize these relationships is through relational plots. Seaborn, with its intricate API, provides an array of tools to showcase how variables interact with one another.

Relational plots in Seaborn can:

  • Identify patterns, correlations, and outliers among two variables.
  • Present the relationship between multiple variables across complex datasets.
  • Delineate data over time or other common variables using hue semantics.

By delving into Seaborn's relational plots, analysts can derive insights into multivariate relationships and how they evolve across parameters.

Tehtävä

Swipe to start coding

Using Seaborn, visualize the relationships in a dataset:

  1. Create a line plot to track changes in a variable over time or sequential order.
  2. Display the relationship between two numeric variables with a scatter plot and differentiate data using color semantics.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 5. Luku 3
toggle bottom row

book
Challenge 3: Relational Plots

Understanding relationships between variables is essential in data analysis. A robust way to visualize these relationships is through relational plots. Seaborn, with its intricate API, provides an array of tools to showcase how variables interact with one another.

Relational plots in Seaborn can:

  • Identify patterns, correlations, and outliers among two variables.
  • Present the relationship between multiple variables across complex datasets.
  • Delineate data over time or other common variables using hue semantics.

By delving into Seaborn's relational plots, analysts can derive insights into multivariate relationships and how they evolve across parameters.

Tehtävä

Swipe to start coding

Using Seaborn, visualize the relationships in a dataset:

  1. Create a line plot to track changes in a variable over time or sequential order.
  2. Display the relationship between two numeric variables with a scatter plot and differentiate data using color semantics.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 5. Luku 3
Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Pahoittelemme, että jotain meni pieleen. Mitä tapahtui?
some-alt