Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Challenge 4: Handling Missing Values | NumPy
Data Science Interview Challenge
course content

Kurssisisältö

Data Science Interview Challenge

Data Science Interview Challenge

1. Python
2. NumPy
3. Pandas
4. Matplotlib
5. Seaborn
6. Statistics
7. Scikit-learn

book
Challenge 4: Handling Missing Values

Managing gaps in your datasets is a task that no data scientist can overlook. In this area, NumPy offers an extensive set of tools. Whether it's detecting, removing, or filling missing values, NumPy has functionalities tailored to handle these tasks with ease.

Employing NumPy's capabilities in handling missing values not only refines your datasets but also paves the way for a more robust and reliable analysis, a cornerstone in data science undertakings.

Tehtävä

Swipe to start coding

Sometimes, datasets might have missing or non-numeric values. Handle them efficiently with numpy.

  1. Check for the presence of NaN values. Set True if NaN exists, False if not.
  2. Replace NaN values with 0.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 4
toggle bottom row

book
Challenge 4: Handling Missing Values

Managing gaps in your datasets is a task that no data scientist can overlook. In this area, NumPy offers an extensive set of tools. Whether it's detecting, removing, or filling missing values, NumPy has functionalities tailored to handle these tasks with ease.

Employing NumPy's capabilities in handling missing values not only refines your datasets but also paves the way for a more robust and reliable analysis, a cornerstone in data science undertakings.

Tehtävä

Swipe to start coding

Sometimes, datasets might have missing or non-numeric values. Handle them efficiently with numpy.

  1. Check for the presence of NaN values. Set True if NaN exists, False if not.
  2. Replace NaN values with 0.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 4
Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Pahoittelemme, että jotain meni pieleen. Mitä tapahtui?
some-alt