Introductions to Partial Derivatives
Partial derivatives measure how functions change with respect to one variable alone. To do this in practice, you're treating one variable as a constant, deriving only one variable at a time.
What Are Partial Derivatives?
A partial derivative is written using the symbol ∂ instead of d for regular derivatives. If a function f(x,y) depends on both x and y, we compute:
∂x∂fh→0limhf(x+h,y)−f(x,y)∂y∂fh→0limhf(x,y+h)−f(x,y)When differentiating with respect to one variable, treat all other variables as constants.
Computing Partial Derivatives
Consider the function:
f(x,y)=x2y+3y2Let's find, ∂x∂f:
∂x∂f=2xy- Differentiate with respect to x, treating y as a constant.
Let's compute, ∂y∂f:
∂y∂f=x2+6y- Differentiate with respect to y, treating x as a constant.
Kiitos palautteestasi!
Kysy tekoälyä
Kysy tekoälyä
Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme
Awesome!
Completion rate improved to 1.89
Introductions to Partial Derivatives
Pyyhkäise näyttääksesi valikon
Partial derivatives measure how functions change with respect to one variable alone. To do this in practice, you're treating one variable as a constant, deriving only one variable at a time.
What Are Partial Derivatives?
A partial derivative is written using the symbol ∂ instead of d for regular derivatives. If a function f(x,y) depends on both x and y, we compute:
∂x∂fh→0limhf(x+h,y)−f(x,y)∂y∂fh→0limhf(x,y+h)−f(x,y)When differentiating with respect to one variable, treat all other variables as constants.
Computing Partial Derivatives
Consider the function:
f(x,y)=x2y+3y2Let's find, ∂x∂f:
∂x∂f=2xy- Differentiate with respect to x, treating y as a constant.
Let's compute, ∂y∂f:
∂y∂f=x2+6y- Differentiate with respect to y, treating x as a constant.
Kiitos palautteestasi!