Challenge: Maximizing Profit Using Quadratic Functions
Tehtävä
Swipe to start coding
A small business tracks its monthly profit over a 12-month period. You're given the company's profit function:
P(x)=−x2+12x−20- x = Number of units sold;
- P(x) = Profit in $1000 units;
- The negative coefficient of x2 means profit increases to a point, then decreases due to production costs.
- Find the optimal number of units to sell (vertex of the parabola).
- Find the breakeven points where profit is zero (roots of the equation).
Ratkaisu
Oliko kaikki selvää?
Kiitos palautteestasi!
Osio 1. Luku 7
single
Kysy tekoälyä
Kysy tekoälyä
Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme
Awesome!
Completion rate improved to 1.89
Challenge: Maximizing Profit Using Quadratic Functions
Pyyhkäise näyttääksesi valikon
Tehtävä
Swipe to start coding
A small business tracks its monthly profit over a 12-month period. You're given the company's profit function:
P(x)=−x2+12x−20- x = Number of units sold;
- P(x) = Profit in $1000 units;
- The negative coefficient of x2 means profit increases to a point, then decreases due to production costs.
- Find the optimal number of units to sell (vertex of the parabola).
- Find the breakeven points where profit is zero (roots of the equation).
Ratkaisu
Oliko kaikki selvää?
Kiitos palautteestasi!
Awesome!
Completion rate improved to 1.89Osio 1. Luku 7
single