Implementing Rational Functions in Python
Unlike previous functions, rational functions require special handling when visualizing them in Python. The presence of undefined points and infinite behavior means we must carefully split the domain to avoid mathematical errors.
1. Defining the Function
We define our rational function as:
def rational_function(x):
return 1 / (x - 1)
Key Considerations:
- x=1 must be excluded from calculations to avoid division by zero;
- The function will be split into two domains (left and right of x=1).
2. Splitting the Domain
To avoid division by zero, we generate two separate sets of x-values:
x_left = np.linspace(-4, 0.99, 250) # Left of x = 1
x_right = np.linspace(1.01, 4, 250) # Right of x = 1
The values 0.99
and 1.01
ensure we never include x=1, preventing errors.
3. Plotting the Function
plt.plot(x_left, y_left, color='blue', linewidth=2, label=r"$f(x) = \frac{1}{x - 1}$")
plt.plot(x_right, y_right, color='blue', linewidth=2)
The function jumps at x=1, so we need to plot it in two pieces.
4. Marking Asymptotes and Intercepts
- Vertical Asymptote (x=1):
def rational_function(x):
return 1 / (x - 1)
- Horizontal Asymptote (y=0):
plt.axhline(0, color='green', linestyle='--',
linewidth=1, label="Horizontal Asymptote (y=0)")
- Y-Intercept at x=0:
y_intercept = rational_function(0)
plt.scatter(0, y_intercept, color='purple', label="Y-Intercept")
5. Adding Directional Arrows
To indicate the function extends infinitely:
plt.annotate('', xy=(x_right[-1], y_right[-1]), xytext=(x_right[-2], y_right[-2]), arrowprops=dict(arrowstyle='->', color='blue', linewidth=1.5))
1. How do you define a rational function in Python that avoids division by zero?
2. What does the following code do?
3. How do we visualize a vertical asymptote in matplotlib
?
Kiitos palautteestasi!
Kysy tekoälyä
Kysy tekoälyä
Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme
Awesome!
Completion rate improved to 1.89
Implementing Rational Functions in Python
Pyyhkäise näyttääksesi valikon
Unlike previous functions, rational functions require special handling when visualizing them in Python. The presence of undefined points and infinite behavior means we must carefully split the domain to avoid mathematical errors.
1. Defining the Function
We define our rational function as:
def rational_function(x):
return 1 / (x - 1)
Key Considerations:
- x=1 must be excluded from calculations to avoid division by zero;
- The function will be split into two domains (left and right of x=1).
2. Splitting the Domain
To avoid division by zero, we generate two separate sets of x-values:
x_left = np.linspace(-4, 0.99, 250) # Left of x = 1
x_right = np.linspace(1.01, 4, 250) # Right of x = 1
The values 0.99
and 1.01
ensure we never include x=1, preventing errors.
3. Plotting the Function
plt.plot(x_left, y_left, color='blue', linewidth=2, label=r"$f(x) = \frac{1}{x - 1}$")
plt.plot(x_right, y_right, color='blue', linewidth=2)
The function jumps at x=1, so we need to plot it in two pieces.
4. Marking Asymptotes and Intercepts
- Vertical Asymptote (x=1):
def rational_function(x):
return 1 / (x - 1)
- Horizontal Asymptote (y=0):
plt.axhline(0, color='green', linestyle='--',
linewidth=1, label="Horizontal Asymptote (y=0)")
- Y-Intercept at x=0:
y_intercept = rational_function(0)
plt.scatter(0, y_intercept, color='purple', label="Y-Intercept")
5. Adding Directional Arrows
To indicate the function extends infinitely:
plt.annotate('', xy=(x_right[-1], y_right[-1]), xytext=(x_right[-2], y_right[-2]), arrowprops=dict(arrowstyle='->', color='blue', linewidth=1.5))
1. How do you define a rational function in Python that avoids division by zero?
2. What does the following code do?
3. How do we visualize a vertical asymptote in matplotlib
?
Kiitos palautteestasi!