Evaluation Before and After Calibration
Swipe to start coding
In this challenge, you will evaluate a classifier before and after probability calibration. You will train a logistic regression classifier on a binary dataset, compute predicted probabilities, and measure:
- Brier score
- Expected Calibration Error (ECE)
- Calibration curve points
You will then apply isotonic regression calibration using CalibratedClassifierCV, recompute the same metrics, and compare the results.
Your goal:
-
Train a logistic regression classifier on the dataset.
-
Generate uncalibrated predicted probabilities.
-
Apply isotonic calibration using
CalibratedClassifierCV. -
Compute Brier score and a simple ECE metric before and after calibration.
-
Print the results as two values:
brier_before,brier_afterece_before,ece_after
Ratkaisu
Kiitos palautteestasi!
single
Kysy tekoälyä
Kysy tekoälyä
Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme
Mahtavaa!
Completion arvosana parantunut arvoon 6.67
Evaluation Before and After Calibration
Pyyhkäise näyttääksesi valikon
Swipe to start coding
In this challenge, you will evaluate a classifier before and after probability calibration. You will train a logistic regression classifier on a binary dataset, compute predicted probabilities, and measure:
- Brier score
- Expected Calibration Error (ECE)
- Calibration curve points
You will then apply isotonic regression calibration using CalibratedClassifierCV, recompute the same metrics, and compare the results.
Your goal:
-
Train a logistic regression classifier on the dataset.
-
Generate uncalibrated predicted probabilities.
-
Apply isotonic calibration using
CalibratedClassifierCV. -
Compute Brier score and a simple ECE metric before and after calibration.
-
Print the results as two values:
brier_before,brier_afterece_before,ece_after
Ratkaisu
Kiitos palautteestasi!
single