Problem A. Binomial Coefficient
Let's use the Memoization principle here. Let dp[i][j]
be a Binomial Coefficient C(i,j). First, dp
initialized with None
.
Given dp[n][k]
:
- if it is None, calculate it as
c(n-1, k-1) + c(n-1, k)
- if it is a base case:
k==0 or k==n
, thendp[n][k] = 1
- else return
dp[n][k]
Note that structure dp
depends on n
, and you must use it for defined n
.
123456789101112131415n = 200 dp = [[None for _ in range(n+1)] for _ in range(n+1)] def c(n, k): if k==0 or k==n: dp[n][k] = 1 if dp[n][k] == None: dp[n][k] = c(n-1, k)+c(n-1, k-1) return dp[n][k] print(c(3, 2)) print(c(10, 4)) print(c(11, 5)) print(c(144, 7))
Oliko kaikki selvää?
Kiitos palautteestasi!
Osio 3. Luku 1
single
Kysy tekoälyä
Kysy tekoälyä
Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme
Suggested prompts:
Tiivistä tämä luku
Explain code
Explain why doesn't solve task
Awesome!
Completion rate improved to 8.33
Problem A. Binomial Coefficient
Pyyhkäise näyttääksesi valikon
Let's use the Memoization principle here. Let dp[i][j]
be a Binomial Coefficient C(i,j). First, dp
initialized with None
.
Given dp[n][k]
:
- if it is None, calculate it as
c(n-1, k-1) + c(n-1, k)
- if it is a base case:
k==0 or k==n
, thendp[n][k] = 1
- else return
dp[n][k]
Note that structure dp
depends on n
, and you must use it for defined n
.
123456789101112131415n = 200 dp = [[None for _ in range(n+1)] for _ in range(n+1)] def c(n, k): if k==0 or k==n: dp[n][k] = 1 if dp[n][k] == None: dp[n][k] = c(n-1, k)+c(n-1, k-1) return dp[n][k] print(c(3, 2)) print(c(10, 4)) print(c(11, 5)) print(c(144, 7))
Oliko kaikki selvää?
Kiitos palautteestasi!
Awesome!
Completion rate improved to 8.33Osio 3. Luku 1
single