Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Problem D. Coin Change | Solutions
Dynamic Programming

bookProblem D. Coin Change

Imagine you got N cents as combination of some coins, and the last added coin was C. Then, number of possible combinations dp[N] is equal to dp[N-C]. Consider that you can reach N cents by adding either c[0], c[1], ... ,c[m-1] cents, so number of possible combinations is:

dp[N] = dp[N-c[0]] + dp[N-c[1]] + ... + dp[N-c[m-1]]

Note that value of N-c[i] must be non-negative. Let's use tabulation: for values j from coin up to N: update dp[j] with adding dp[j-coin]; repeat for each coin.

12345678910
def coinChange(n , coins): dp = [0 for _ in range(n+1)] dp[0] = 1 for i in range(len(coins)): for j in range(coins[i], n+1): dp[j] += dp[j-coins[i]] return dp[n] print(coinChange(14, [1,2,3,7])) print(coinChange(100, [2,3,5,7,11]))
copy

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 3. Luku 4
single

single

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

Suggested prompts:

Tiivistä tämä luku

Explain code

Explain why doesn't solve task

close

Awesome!

Completion rate improved to 8.33

bookProblem D. Coin Change

Pyyhkäise näyttääksesi valikon

Imagine you got N cents as combination of some coins, and the last added coin was C. Then, number of possible combinations dp[N] is equal to dp[N-C]. Consider that you can reach N cents by adding either c[0], c[1], ... ,c[m-1] cents, so number of possible combinations is:

dp[N] = dp[N-c[0]] + dp[N-c[1]] + ... + dp[N-c[m-1]]

Note that value of N-c[i] must be non-negative. Let's use tabulation: for values j from coin up to N: update dp[j] with adding dp[j-coin]; repeat for each coin.

12345678910
def coinChange(n , coins): dp = [0 for _ in range(n+1)] dp[0] = 1 for i in range(len(coins)): for j in range(coins[i], n+1): dp[j] += dp[j-coins[i]] return dp[n] print(coinChange(14, [1,2,3,7])) print(coinChange(100, [2,3,5,7,11]))
copy

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 3. Luku 4
single

single

some-alt