Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Problem D. Coin Change | Problems
Dynamic Programming

Pyyhkäise näyttääksesi valikon

book
Problem D. Coin Change

The tasks in this section contain test function calls. Please do not change this code; otherwise, the assignment may not be accepted.

The problem is to find the possible number of ways to get N cents with coins of different denominations. Imagine you have an infinite amount of coins valued c[0], c[1], c[2], …, c[m-1] – some values (for example, coins of 1, 2, 5, and 10 cents; these values are stored to input as an array).

You can combine these coins to achieve N cents in sum. Calculate the number of possible variations.

Order does not matter, i. e. for N=10 combinations 1+2+2+5, 2+1+2+5, and 5+2+1+2 are equal.

Example 1: N = 5, coins = [1,2,5] -> 4

There are 4 ways to combine coins: 5=1+1+1+1+1, 5=1+1+1+2, 5=1+2+2, 5=5.

Example 2: N=4, coins=[1,2,3,7] -> 4

Answer is 4: 4=1+1+1+1, 4=2+2, 4=1+3, 4=1+1+2

Example 3: N=100, coins = [1,3,5,7,10] -> 6426

Tehtävä

Swipe to start coding

Implement the function and call it for the given test calls.

  1. How many ways to reach the K coins if you know the number of how to reach K-c[0], K-c[1], ... , K-c[m-1] coins?
  2. What is the least sum you can change using only one coin of c[0], c[1], ..., or c[-1]?

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 4

Kysy tekoälyä

expand
ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

book
Problem D. Coin Change

The tasks in this section contain test function calls. Please do not change this code; otherwise, the assignment may not be accepted.

The problem is to find the possible number of ways to get N cents with coins of different denominations. Imagine you have an infinite amount of coins valued c[0], c[1], c[2], …, c[m-1] – some values (for example, coins of 1, 2, 5, and 10 cents; these values are stored to input as an array).

You can combine these coins to achieve N cents in sum. Calculate the number of possible variations.

Order does not matter, i. e. for N=10 combinations 1+2+2+5, 2+1+2+5, and 5+2+1+2 are equal.

Example 1: N = 5, coins = [1,2,5] -> 4

There are 4 ways to combine coins: 5=1+1+1+1+1, 5=1+1+1+2, 5=1+2+2, 5=5.

Example 2: N=4, coins=[1,2,3,7] -> 4

Answer is 4: 4=1+1+1+1, 4=2+2, 4=1+3, 4=1+1+2

Example 3: N=100, coins = [1,3,5,7,10] -> 6426

Tehtävä

Swipe to start coding

Implement the function and call it for the given test calls.

  1. How many ways to reach the K coins if you know the number of how to reach K-c[0], K-c[1], ... , K-c[m-1] coins?
  2. What is the least sum you can change using only one coin of c[0], c[1], ..., or c[-1]?

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 4
Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Pahoittelemme, että jotain meni pieleen. Mitä tapahtui?
some-alt