Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Multiplication Rule for Independent Events | Statistical Dependence
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Probability Theory Update

bookMultiplication Rule for Independent Events

When do we use the multiplication rule?

If we want to calculate the probability of two events occur at the same time (event A and B), we use multiplication rule.

Formula:

P(A and B) = P(A) * P(B)

  • P(A and B) - the probability of event A occurring and event B occurring at the same time,
  • P(A) - the probability of event A occurring,
  • P(B) - the probability of event B occurring.

Task example:

If you are rolling two dice simultaneously, what is the probability that the outcome of the first one is an even number and the second is 5?

The outcomes for the first case (even number): 2, 4, 6.

The outcomes for the second case (number 5): 5.

  1. P(even) = 3/6 = 0.5 = 50%,
  2. P(5) = 1/6 = 0.1667 = 16.67% (ronded to the two decimal points),
  3. P(even and 5) = P(even) * P(5) = 0.0833 = 8.33%

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 5

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

Suggested prompts:

Kysy minulta kysymyksiä tästä aiheesta

Tiivistä tämä luku

Näytä käytännön esimerkkejä

bookMultiplication Rule for Independent Events

Pyyhkäise näyttääksesi valikon

When do we use the multiplication rule?

If we want to calculate the probability of two events occur at the same time (event A and B), we use multiplication rule.

Formula:

P(A and B) = P(A) * P(B)

  • P(A and B) - the probability of event A occurring and event B occurring at the same time,
  • P(A) - the probability of event A occurring,
  • P(B) - the probability of event B occurring.

Task example:

If you are rolling two dice simultaneously, what is the probability that the outcome of the first one is an even number and the second is 5?

The outcomes for the first case (even number): 2, 4, 6.

The outcomes for the second case (number 5): 5.

  1. P(even) = 3/6 = 0.5 = 50%,
  2. P(5) = 1/6 = 0.1667 = 16.67% (ronded to the two decimal points),
  3. P(even and 5) = P(even) * P(5) = 0.0833 = 8.33%

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 5
some-alt