Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Conditional probability | Statistical Dependence
Probability Theory Update

bookConditional probability

When do we use conditional probability?

Likelihood of an event occurring if that another event has already happened.

Formula:

P(A|B) = P(A and B)/P(B)

  • P(A|B) - the probability of A given B.
  • P(A and B) - the probability of A and B.
  • P(B) - the probability of B.

Task example:

You have 25 balls: 20 **yellow and 5 blue. Among these balls, 5 yellow balls have a defect and 4 blue. The randomly selected ball is blue; calculate the probability that it has a defect.

P(A|B) = P(A and B)/P(B)

  • P(deffect and blue) = 4/25 = 0.16 = 16%.
  • P(blue) = 5/25 = 0.2 = 20%.
  • P(deffect|blue) = 16%/20% = 80%.

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 7

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

Suggested prompts:

Kysy minulta kysymyksiä tästä aiheesta

Tiivistä tämä luku

Näytä käytännön esimerkkejä

Awesome!

Completion rate improved to 3.7

bookConditional probability

Pyyhkäise näyttääksesi valikon

When do we use conditional probability?

Likelihood of an event occurring if that another event has already happened.

Formula:

P(A|B) = P(A and B)/P(B)

  • P(A|B) - the probability of A given B.
  • P(A and B) - the probability of A and B.
  • P(B) - the probability of B.

Task example:

You have 25 balls: 20 **yellow and 5 blue. Among these balls, 5 yellow balls have a defect and 4 blue. The randomly selected ball is blue; calculate the probability that it has a defect.

P(A|B) = P(A and B)/P(B)

  • P(deffect and blue) = 4/25 = 0.16 = 16%.
  • P(blue) = 5/25 = 0.2 = 20%.
  • P(deffect|blue) = 16%/20% = 80%.

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 7
some-alt